HBM、HBM2、HBM3和HBM3e技术对比

HBM即高带宽存储,由多层DRAM Die垂直堆叠,每层Die通过TSV穿透硅通孔技术实现与逻辑Die连接,使得8层、12层Die封装于小体积空间中,从而实现小尺寸于高带宽、高传输速度的兼容,成为高性能AI服务器GPU显存的主流解决方案。

目前迭代至HBM3的扩展版本HBM3E,提供高达8Gbps的传输速度和16GB内存,由SK海力士率先发布,将于2024年量。

HBM主要应用场景为AI服务器,最新一代HBM3e搭载于英伟达2023年发布的H200。根据Trendforce数据,2022年AI服务器出货量86万台,预计2026年AI服务器出货量将超过200万台,年复合增速29%。

AI服务器出货量增长催化HBM需求爆发,且伴随服务器平均HBM容量增加,经测算,预期25年市场规模约150亿美元,增速超过50%。

HBM供给厂商主要聚集在SK海力士、三星、美光三大存储原厂,根据Trendforce数据,2023年SK海力士市占率预计为53%,三星市占率38%、美光市占率9%。HBM在工艺上的变化主要在CoWoS和TSV。

关联阅读:

一文看懂英伟达A100、A800、H100、H800各个版本有什么区别? - 知乎 (zhihu.com)

生物信息学必备网站大全 - 知乎 (zhihu.com)

生物信息学简史 - 知乎 (zhihu.com

2023第一性原理科研服务器、量化计算平台推荐 - 知乎 (zhihu.com)

Llama-2 LLM各个版本GPU服务器的配置要求是什么? - 知乎 (zhihu.com)

HBM1最早于2014年由AMD与SK海力士共同推出,作为GDDR竞品,为4层die堆叠,提供128GB/s带宽,4GB内存,显著优于同期GDDR5。

HBM2于2016年发布,2018年正式推出,为4层DRAMdie,现在多为8层die,提供256GB/s带宽,2.4Gbps传输速度,和8GB内存HBM2E于2018年发布,于2020年正式提出,在传输速度和内存等方面均有较大提升,提供3.6Gbps传输速度,和16GB内存。HBM3于2020年发布,2022年正式推出,堆叠层数及管理通道数均有增加,提供6.4Gbps传输速度,传输速度最高可达819GB/s,和16GB内存HBM3E由SK海力士发布HBM3的增强版,提供高达8Gbps的传输速度,24GB容量,计划于2024年大规模量产。

HBM因其高带宽、低功耗、小体积等特性,广泛应用于AI服务器场景中。HBM的应用主要集中在高性能服务器,最早落地于2016年的NVP100GPU(HBM2)中,后于2017年应用在V100(HBM2)、于2020年应用在A100(HBM2)、于2022年应用在H100(HBM2e/HBM3),最新一代HBM3e搭载于英伟达2023年发布的H200,为服务器提供更快速度及更高容量。

HBM供给厂商主要聚集在SK海力士、三星、美光三大厂,SK海力士领跑。三大存储原厂主要承担DRAMDie的生产及堆叠,展开技术升级竞赛,其中SK海力士与AMD合作发布全球首款HBM,23年率先供应新一代HBM3E,先发奠定市场地位,主要供应英伟达,三星供应其他云端厂商,根据TrendForce数据,2022年SK海力士市占率50%、三星市占率40%、美光市占率10%左右,2023年SK海力士市占率预计为53%,三星市占率38%、美光市占率9%。

HBM在封装工艺上的变化主要在CoWoS和TSV。

1)CoWoS:是将DRAMDie一同放在硅中介层上,通过过ChiponWafer(CoW)的封装制程连接至底层基板上,即将芯片通过ChiponWafer(CoW)的封装制程连接至硅晶圆,再把CoW芯片与基板连接,整合成CoWoS。当前,HBM与GPU集成的主流解决方案为台积电的CoWoS,通过缩短互连长度实现更高速的数据传输,已广泛应用于A100、GH200等算力芯片中。

2)TSV:TSV硅通孔是实现容量和带宽扩展的核心,通过在整个硅晶圆厚度上打孔,在芯片正面和背面之间形成数千个垂直互连。在HBM中多层DRAMdie堆叠,通过硅通孔和焊接凸点连接,且只有最底部的die能向外连接到存储控制器,其余管芯则通过内部TSV实现互连。

以上内容来自智能计算芯世界

一文看懂英伟达A100、A800、H100、H800各个版本有什么区别? - 知乎 (zhihu.com)

人工智能训练与推理工作站、服务器、集群硬件配置推荐

整理了一些深度学习,人工智能方面的资料,可以看看

机器学习、深度学习和强化学习的关系和区别是什么? - 知乎 (zhihu.com)

人工智能 (Artificial Intelligence, AI)主要应用领域和三种形态:弱人工智能、强人工智能和超级人工智能。

买硬件服务器划算还是租云服务器划算? - 知乎 (zhihu.com)

深度学习机器学习知识点全面总结 - 知乎 (zhihu.com)

自学机器学习、深度学习、人工智能的网站看这里 - 知乎 (zhihu.com)

2023年深度学习GPU服务器配置推荐参考(3) - 知乎 (zhihu.com)

多年来一直专注于科学计算服务器,入围政采平台,H100、A100、H800、A800、L40、L40S、RTX6000 AdaRTX A6000单台双路256核心服务器等。

2024年HBM技术革新:AI算力瓶颈突破与市场前景》一书为AI领域中的内存瓶颈提供了深入见解。HBM3e作为HBM3的改进版本,在多个技术参数上实现了显著的提升,特别是在解决AI内存瓶颈方面。 参考资源链接:[2024年HBM技术革新:AI算力瓶颈突破与市场前景](https://wenku.csdn.net/doc/19k4j026jr?spm=1055.2569.3001.10343) HBM3e采用了更高密度的存储单元设计,使得每个芯片的容量得到显著增加。随着内存容量的增加,HBM3e能够支持更大规模的数据处理,这对于需要处理大量数据的AI应用至关重要。此外,HBM3e的带宽提升也是关键的技术优势之一。通过优化TSV(Through Silicon Via,贯穿硅的孔道)技术微凸块键合技术HBM3e实现了更高速的数据传输,从而降低了数据处理时的延迟,提高了内存访问的效率。 HBM3e在设计上还特别考虑到了能源效率。随着堆叠层数的增加,传统设计可能会导致更高的能耗热量问题,但HBM3e通过创新的热管理技术低功耗设计,有效地控制了能耗,这在大型数据中心高性能计算环境中尤为重要。 综上所述,HBM3e与HBM3相比,在存储密度、带宽以及能效方面都实现了技术上的突破,使得它成为解决AI内存瓶颈的有效方案。通过阅读《2024年HBM技术革新:AI算力瓶颈突破与市场前景》,您可以获得更全面的视角来理解HBM技术如何在未来几年内推动AI计算能力的飞跃。 参考资源链接:[2024年HBM技术革新:AI算力瓶颈突破与市场前景](https://wenku.csdn.net/doc/19k4j026jr?spm=1055.2569.3001.10343)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值