数据科学进阶:SHAP值与模型解释——从理论到实践

2024深度学习发论文&模型涨点之——SHAP可解释学习

SHAP(SHapley Additive exPlanations)是一种用于解释机器学习模型预测结果的方法,它基于Shapley值理论,通过将预测结果分解为每个特征的影响,为模型提供全局和局部的可解释性。

SHAP的核心思想是将特征值的贡献分配到不同的特征中,计算每个特征的Shapley值,并将其与特征值相乘得到该特征对于预测结果的贡献。这种方法可以用于机器学习模型,包括分类和回归模型,可以生成图像化和定量的解释结果,帮助用户解释模型的决策过程。

小编整理了一些SHAP可解释学习论文合集,以下放出部分,全部论文PDF版扫码领取。

需要的同学扫码添加我

回复“SHAP可解释学习”即可全部领取

图片

论文精选

论文1:

SHAP value-based ERP analysis (SHERPA): Increasing the sensitivity of EEG signals with explainable AI methods

基于SHAP值的ERP分析(SHERPA):用可解释的AI方法提高EEG信号的敏感性

方法

  • 卷积神经网络(CNN):用于分类实验条件,提取EEG信号中的特征。

  • SHAPley Additive exPlanations (SHAP):作为事后解释器,识别重要的时间和空间特征,以理解ERP数据中的模式。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值