2024深度学习发论文&模型涨点之——SHAP可解释学习
SHAP(SHapley Additive exPlanations)是一种用于解释机器学习模型预测结果的方法,它基于Shapley值理论,通过将预测结果分解为每个特征的影响,为模型提供全局和局部的可解释性。
SHAP的核心思想是将特征值的贡献分配到不同的特征中,计算每个特征的Shapley值,并将其与特征值相乘得到该特征对于预测结果的贡献。这种方法可以用于机器学习模型,包括分类和回归模型,可以生成图像化和定量的解释结果,帮助用户解释模型的决策过程。
小编整理了一些SHAP可解释学习论文合集,以下放出部分,全部论文PDF版扫码领取。
需要的同学扫码添加我
回复“SHAP可解释学习”即可全部领取
论文精选
论文1:
SHAP value-based ERP analysis (SHERPA): Increasing the sensitivity of EEG signals with explainable AI methods
基于SHAP值的ERP分析(SHERPA):用可解释的AI方法提高EEG信号的敏感性
方法
-
卷积神经网络(CNN):用于分类实验条件,提取EEG信号中的特征。
-
SHAPley Additive exPlanations (SHAP):作为事后解释器,识别重要的时间和空间特征,以理解ERP数据中的模式。