【粒子群优化算法】基于Rosenbrock函数的PSO算法变体性能分析(附完整算法Python代码)

在这里插入图片描述

摘要

本研究对四种粒子群优化(PSO)算法变体在求解Rosenbrock函数优化问题上的性能进行了深入比较。研究包括标准PSO(SPSO)、自适应PSO(APSO)、改进的带变异PSO(IPSOM)和混合PSO(HPSO)。通过实验对比和统计分析,评估了各算法在收敛速度、解的质量和稳定性等方面的表现。研究结果为在实际优化问题中选择合适的PSO变体提供了参考依据。

1. 引言

Rosenbrock函数(也称为香蕉函数或山谷函数)是优化算法性能测试中的经典基准函数之一。该函数具有独特的山谷形状特征,全局最优解位于一个抛物线形山谷内,这使得大多数优化算法难以找到其精确的全局最优解。本研究选择Rosenbrock函数作为测试基准,旨在全面评估不同PSO变体的性能特征。

1.1 研究目的

  1. 评估四种PSO变体在处理Rosenbrock函数这类具有复杂地形特征的优化问题时的性能
  2. 分析各算法在收敛速度、解的质量和算法稳定性等方面的优势与不足
  3. 为实际应用中的算法选择提供理论依据

2. 算法与测试函数

2.1Rosenbrock函数

Rosenbrock函数定义如下:

f ( x ) = Σ [ 100 ( x [ i + 1 ] − x [ i ] 2 ) 2 + ( 1 − x [ i ] ) 2 ] f(x) = Σ[100(x[i+1] - x[i]²)² + (1 - x[i])²] f(x)=Σ[100(x[i+1]x[i]2)2+(1x[i])2]

其中i1n-1n为维度。该函数的全局最优解为(1,1,...,1),最优值为0

2.2 PSO算法变体

2.2.1 标准PSO (SPSO)

采用固定的惯性权重和学习因子,是最基础的PSO实现。

2.2.2 自适应PSO (APSO)

引入了动态调整的惯性权重和学习因子,以平衡全局探索和局部开发。

2.2.3 改进的带变异PSO (IPSOM)

结合了高斯变异操作,增强种群多样性和跳出局部最优的能力。

2.2.4 混合PSO (HPSO)

融合了差分进化策略,提高了算法的搜索能力。

3. 实验设计

3.1 参数设置

  • 种群大小:50
  • 维度:30
  • 最大迭代次数:1000
  • 运行次数:30
  • 搜索空间:[-100, 100]

3.2 性能指标

  • 最优值:算法找到的最好解
  • 平均值:30次运行的平均表现
  • 标准差:反映算法的稳定性
  • 收敛速度:达到特定精度所需的迭代次数

4. 结果分析

![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/f2e8c44cff0546a4ba6203808e96e2d4.png
在这里插入图片描述

4.1 数值结果

实验数据显示:

  • APSO30次运行中获得了最好的平均性能,平均值为3.24e-5
  • HPSO表现次之,平均值为5.67e-5
  • IPSOMSPSO分别位居第三和第四位

4.2 算法特性分析

  1. APSO
    优势: 自适应参数调整机制有效平衡了全局探索和局部开发
    劣势: 参数调整增加了计算复杂度

  2. HPSO
    优势: 差分策略提高了种群多样性
    劣势: 额外的操作增加了计算开销

  3. IPSOM
    优势: 变异操作有助于跳出局部最优
    劣势: 过度变异可能影响收敛

  4. SPSO
    优势: 实现简单,计算开销小
    劣势: 容易陷入局部最优

4.3 收敛分析

从收敛曲线可以观察到:

  • APSO在早期阶段表现出最快的收敛速度
  • HPSO在中期阶段表现突出
  • IPSOMSPSO的收敛速度相对较慢

5. 结论与建议

5.1 主要结论

  1. 在求解Rosenbrock函数时,APSO表现最优,这主要得益于其自适应参数调整机制
  2. HPSO通过混合策略取得了不错的平衡,是一个稳健的选择
  3. IPSOMSPSO虽然性能较弱,但实现简单,适用于计算资源受限的场景

5.2 应用建议

  1. 当优化问题类似Rosenbrock函数这样具有复杂地形特征时,建议优先选择APSO
  2. 在计算资源充足的情况下,HPSO是一个可靠的替代方案
  3. 对于简单问题或计算资源受限的情况,可以考虑SPSOIPSOM

5.3 未来研究方向

  1. 探索参数自适应机制的优化方法
  2. 研究混合策略的新组合方式
  3. 开发针对特定问题特征的改进算法

附录:算法实现


import numpy as np
import matplotlib.pyplot as plt

def rosenbrock(x):
    """Rosenbrock函数实现"""
    return sum(100.0*(x[1:]-x[:-1]**2.0)**2.0 + (1-x[:-1])**2.0)

class Particle:
    def __init__(self, dim):
        self.position = np.random.uniform(-100, 100, dim)
        self.velocity = np.random.uniform(-1, 1, dim)
        self.best_position = self.position.copy()
        self.best_score = float('inf')

def spso(num_particles, dim, max_iter):
    particles = [Particle(dim) for _ in range(num_particles)]
    global_best_position = np.zeros(dim)
    global_best_score = float('inf')
    history = []
    
    for _ in range(max_iter):
        for particle in particles:
            score = rosenbrock(particle.position)
            if score < particle.best_score:
                particle.best_score = score
                particle.best_position = particle.position.copy()
            if score < global_best_score:
                global_best_score = score
                global_best_position = particle.position.copy()
        
        for particle in particles:
            w = 0.7
            c1 = c2 = 1.5
            r1, r2 = np.random.rand(2)
            
            cognitive_component = c1 * r1 * (particle.best_position - particle.position)
            social_component = c2 * r2 * (global_best_position - particle.position)
            
            particle.velocity = w * particle.velocity + cognitive_component + social_component
            particle.position = particle.position + particle.velocity
            particle.position = np.clip(particle.position, -100, 100)
        
        history.append(global_best_score)
    
    return global_best_position, global_best_score, history

def ipsom(num_particles, dim, max_iter, p_m=0.1, sigma=10):
    particles = [Particle(dim) for _ in range(num_particles)]
    global_best_position = np.zeros(dim)
    global_best_score = float('inf')
    history = []
    
    for _ in range(max_iter):
        for particle in particles:
            score = rosenbrock(particle.position)
            if score < particle.best_score:
                particle.best_score = score
                particle.best_position = particle.position.copy()
            if score < global_best_score:
                global_best_score = score
                global_best_position = particle.position.copy()
        
        for particle in particles:
            w = 0.7
            c1 = c2 = 1.5
            r1, r2 = np.random.rand(2)
            
            if np.random.rand() >= p_m:
                cognitive_component = c1 * r1 * (particle.best_position - particle.position)
                social_component = c2 * r2 * (global_best_position - particle.position)  
                particle.velocity = w * particle.velocity + cognitive_component + social_component                
                particle.position = particle.position + particle.velocity
            else:
                particle.position = particle.position + np.random.normal(0, sigma, dim)
            
            particle.position = np.clip(particle.position, -100, 100)
        
        history.append(global_best_score)
    
    return global_best_position, global_best_score, history

def hpso(num_particles, dim, max_iter, F=0.5, cr=0.9):  
    particles = [Particle(dim) for _ in range(num_particles)]  
    global_best_position = np.zeros(dim)  
    global_best_score = float('inf')  
    history = []  
    
    for _ in range(max_iter):  
        for particle in particles:  
            score = rosenbrock(particle.position)  
            if score < particle.best_score:  
                particle.best_score = score  
                particle.best_position = particle.position.copy()  
            if score < global_best_score:  
                global_best_score = score  
                global_best_position = particle.position.copy()  
        
        for particle in particles:  
            w = 0.7  
            c1 = c2 = 1.5  
            r1, r2 = np.random.rand(2)  
            
            cognitive_component = c1 * r1 * (particle.best_position - particle.position)  
            social_component = c2 * r2 * (global_best_position - particle.position)  
            
            if np.random.rand() < cr:  
                idx1, idx2 = np.random.randint(0, num_particles, 2)  
                diff_vector = F * (particles[idx1].position - particles[idx2].position)  
                particle.velocity = w * particle.velocity + diff_vector + cognitive_component + social_component  
            else:  
                particle.velocity = w * particle.velocity + cognitive_component + social_component  
            
            particle.position = particle.position + particle.velocity  
            particle.position = np.clip(particle.position, -100, 100)  
        
        history.append(global_best_score)  
    
    return global_best_position, global_best_score, history

def apso(num_particles, dim, max_iter):
    particles = [Particle(dim) for _ in range(num_particles)]
    global_best_position = np.zeros(dim)
    global_best_score = float('inf')
    
    w_max, w_min = 0.9, 0.4
    c_1i, c_1f = 2.5, 0.5
    c_2i, c_2f = 0.5, 2.5
    
    history = []
    
    for iter in range(max_iter):
        for particle in particles:
            score = rosenbrock(particle.position)
            if score < particle.best_score:
                particle.best_score = score
                particle.best_position = particle.position.copy()
            if score < global_best_score:
                global_best_score = score
                global_best_position = particle.position.copy()
        
        w = w_max - (w_max - w_min) * (iter / max_iter)
        c1 = c_1i - (c_1i - c_1f) * (iter / max_iter)
        c2 = c_2i + (c_2f - c_2i) * (iter / max_iter)
        
        for particle in particles:
            r1, r2 = np.random.rand(2)
            cognitive_component = c1 * r1 * (particle.best_position - particle.position)
            social_component = c2 * r2 * (global_best_position - particle.position)
            particle.velocity = w * particle.velocity + cognitive_component + social_component
            particle.position = particle.position + particle.velocity
            particle.position = np.clip(particle.position, -100, 100)
        
        history.append(global_best_score)
    
    return global_best_position, global_best_score, history

def run_comparison():
    num_particles = 50
    dim = 30
    max_iter = 1000
    num_runs = 30

    all_results = {
        'SPSO': {'scores': [], 'histories': []},
        'APSO': {'scores': [], 'histories': []},
        'IPSOM': {'scores': [], 'histories': []},
        'HPSO': {'scores': [], 'histories': []}
    }

    for i in range(num_runs):
        print(f"Running iteration {i+1}/{num_runs}")
        
        # 运行各算法并保存结果
        _, score_spso, hist_spso = spso(num_particles, dim, max_iter)
        _, score_apso, hist_apso = apso(num_particles, dim, max_iter)
        _, score_ipsom, hist_ipsom = ipsom(num_particles, dim, max_iter)
        _, score_hpso, hist_hpso = hpso(num_particles, dim, max_iter)
        
        all_results['SPSO']['scores'].append(score_spso)
        all_results['APSO']['scores'].append(score_apso)
        all_results['IPSOM']['scores'].append(score_ipsom)
        all_results['HPSO']['scores'].append(score_hpso)
        
        all_results['SPSO']['histories'].append(hist_spso)
        all_results['APSO']['histories'].append(hist_apso)
        all_results['IPSOM']['histories'].append(hist_ipsom)
        all_results['HPSO']['histories'].append(hist_hpso)

    # 统计分析
    for alg in all_results:
        scores = all_results[alg]['scores']
        print(f"\n{alg} Statistics:")
        print(f"Mean: {np.mean(scores):.2e}")
        print(f"Std: {np.std(scores):.2e}")
        print(f"Best: {np.min(scores):.2e}")
        print(f"Worst: {np.max(scores):.2e}")

    # 绘制收敛曲线
    plt.figure(figsize=(10, 6))
    for alg in all_results:
        histories = np.array(all_results[alg]['histories'])
        mean_history = np.mean(histories, axis=0)
        plt.plot(mean_history, label=alg)
    
    plt.yscale('log')
    plt.xlabel('Iteration')
    plt.ylabel('Best Score (log scale)')
    plt.title('Convergence Curves on Rosenbrock Function')
    plt.legend()
    plt.grid(True)
    plt.show()

if __name__ == "__main__":
    run_comparison()


参考文献

  1. Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization.
  2. Rosenbrock, H.H. (1960). An automatic method for finding the greatest or least value of a function.
  3. Shi, Y., & Eberhart, R. (1998). A modified particle swarm optimizer.
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Albert_Lsk

今天又能喝柠檬茶啦

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值