生信入门-R/Rstudio近期安装GSVA包后使用gsva函数报错Calling gsva(expr=., gset.idx.list=., method=., ...) is defunct

解决方法如下:

(我的R版本4.4.0,GSVA版本1.52.5,官方表示只要保证均为最新应该是一句warning而不是error(然已确认全部最新版本但并未解决,因此出此方法)):

首先给一个gsvaP(or other names) <- ssgseaParam(
exprData = expr,
geneSets = cellMarker,
assay = NA_character_,
annotation = NA_character_,
minSize = 1,
maxSize = Inf,
alpha = 0.25,
normalize = TRUE
)

再gsva_data(or other names) <- gsva(gsvaP)

附解决思路:网页检索/仔细看报错/?gsva查看帮助页更新(最终解决途径)

P.S.: 个人R自学记录,为帮助遇到同样问题的朋友们,如有不对或更简单的解决方法欢迎大佬赐教

分析中,`t.test` 函数在R语言中用于执行独立样本的t检验,主要用于比较两个样本平均值是否有显著差异。其基本语法如下: ```r t.test(x, y = NULL, alternative = "two.sided", mu = 0, var.equal = FALSE, paired = FALSE, conf.level = 0.95, ..., trim = 0, na.rm = TRUE, exact = FALSE) ``` 参数说明: - `x` 或 `y`: 要比较的数值向量,如果只有一个变量,则视为单样本;如果有两个,则进行双样本比较。 - `alternative`: 检验假设,默认为"two.sided",即两侧检验(两尾),还有"greater"(单侧,上侧)和"less"(单侧,下侧)。 - `mu`: 默认为0,表示零假设,即两组平均值相等。 - `var.equal` (布尔): 如果设为`TRUE`,则假定两组数据方差相等,否则会计算分母更复杂的Welch's t检验。 - `paired` (布尔): 是否为配对样本检验,默认为`FALSE`。 - `conf.level`: 显著性水平,默认为95%,即置度。 - `trim` (数字): 对两端指定比例的数据进行截断,避免异常值影响结果。 - `na.rm` (布尔): 是否删除缺失值,默认删除。 - `exact` (布尔): 对于小样本,是否进行精确p值计算,默认为`FALSE`,使用连续近似。 使用这个函数时,通常需要先准备好要对比的两个变量,然后根据研究目的选择适当的参数设置。例如,比较两组学分数的均值差异可以这样操作: ```r # 假设有两个样本数据,分别存储在 vectors x 和 y 中 scores_x <- c(85, 92, 78, 90) scores_y <- c(88, 86, 90, 94) # 进行t检验 t_test_results <- t.test(scores_x, scores_y) summary(t_test_results) # 查看结果摘要 ```
评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值