数据分析-Pandas数据的画图设置

本文介绍了如何使用Pandas进行数据分析,包括数据可视化、创建新列、统计数据概况、处理时间序列数据以及重塑数据表。通过实例演示了如何使用matplotlib进行图形设置,如风格选择、系列标注、坐标轴标注和坐标缩放。
摘要由CSDN通过智能技术生成

数据分析-Pandas数据的画图设置

数据分析和处理中,难免会遇到各种数据,那么数据呈现怎样的规律呢?不管金融数据,风控数据,营销数据等等,莫不如此。如何通过图示展示数据的规律?

数据表,时间序列数据在数据分析建模中很常见,例如天气预报,空气状态监测,股票交易等金融场景。数据分析过程中重新调整,重塑数据表是很重要的技巧,此处选择Titanic数据,以及巴黎、伦敦欧洲城市空气质量监测 N O 2 NO_2 NO2数据作为样例。

数据分析

数据分析-Pandas如何转换产生新列

数据分析-Pandas如何统计数据概况

数据分析-Pandas如何轻松处理时间序列数据

数据分析-Pandas如何选择数据子集

数据分析-Pandas如何重塑数据表-CSDN博客

本文用到的样例数据:

Titanic数据

空气质量监测 N O 2 NO_2 NO2数据

样例代码:

源代码参考 Pandas如何重塑数据表

源代码参考 python数据分析-数据表读写到pandas

导入关键模块

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

plt.close("all")

设置画图的风格

matplotlib 提供了预设画图的风格。如果你有喜欢的风格,可以保存下来,后续调用。以下是调用的样例:

# 调用 自己的画图风格
matplotlib.style.use(my_plot_style) 

# 调用 ggplot风格
matplotlib.style.use('ggplot')

# 查看现有的风格
matplotlib.style.available

具体有哪些风格呢?

系列对应标注

通过设置 legend 参数控制是否展示标注。有时候系列标注碍眼,需要取消。

df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index, columns=list("ABCD"))

df = df.cumsum()

df.plot(legend=False);

在这里插入图片描述

坐标轴标注

通过设置xlabel,ylabel设置x轴,y轴的标注。

df.plot();

df.plot(xlabel="new x", ylabel="new y");

在这里插入图片描述

坐标缩放

有时候需要绘画对数坐标,咋办呢?此处可以用logy 设置数值的对数坐标系

ts = pd.Series(np.random.randn(1000), index=pd.date_range("1/1/2000", periods=1000))

ts = np.exp(ts.cumsum())

ts.plot(logy=True);

在这里插入图片描述

以上代码只是一个简单示例,示例代码中的表达式可以根据实际问题进行修改。

后面介绍下其他的展示形式。

觉得有用 收藏 收藏 收藏

点个赞 点个赞 点个赞

End

GPT专栏文章:

GPT实战系列-ChatGLM3本地部署CUDA11+1080Ti+显卡24G实战方案

GPT实战系列-LangChain + ChatGLM3构建天气查询助手

大模型查询工具助手之股票免费查询接口

GPT实战系列-简单聊聊LangChain

GPT实战系列-大模型为我所用之借用ChatGLM3构建查询助手

GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(二)

GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(一)

GPT实战系列-ChatGLM2模型的微调训练参数解读

GPT实战系列-如何用自己数据微调ChatGLM2模型训练

GPT实战系列-ChatGLM2部署Ubuntu+Cuda11+显存24G实战方案

GPT实战系列-Baichuan2本地化部署实战方案

GPT实战系列-Baichuan2等大模型的计算精度与量化

GPT实战系列-GPT训练的Pretraining,SFT,Reward Modeling,RLHF

GPT实战系列-探究GPT等大模型的文本生成-CSDN博客

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Alex_StarSky

你的鼓励是创作的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值