矩阵与行列式

矩阵相关
  1. A n m A_{nm} Anm表示一个 n ∗ m n*m nm的矩阵.

  2. 特别地,一个 1 1 1 m m m列的矩阵被称为行向量,列向量同理.

  3. A n n A_{nn} Ann可以被称为 n n n阶方阵 A n A_n An.

  4. A T A^T AT表示矩阵 A A A的转置,即 A i , j T = A j , i A^T_{i,j}=A_{j,i} Ai,jT=Aj,i.

  5. 对角矩阵:除主对角线外所有元素均为 0 0 0的矩阵.

  6. 主对角线以下均为 0 0 0的方阵上三角矩阵,下三角矩阵同理.

  7. 单元矩阵用 I I I表示,即主对角线元素全为 1 1 1的对角矩阵.

  8. 伴随矩阵 A ∗ i , j {A^*}_{i,j} Ai,j为:元素 a j i a_{ji} aji的代数余子式.

行列式的定义

一个矩阵 a a a行列式表示为 ∣ A ∣ |A| A det ⁡ ( A ) \det(A) det(A)

定义: ∣ A ∣ = ∑ p ( − 1 ) τ ( p ) ∏ i = 1 n a i , p i |A|=\sum_{p}(-1)^{\tau(p)}\prod_{i=1}^na_{i,p_i} A=p(1)τ(p)i=1nai,pi

此外,我们发现 ∣ A ∣ |A| A的等价定义还有: ∣ A ∣ = ∑ p ( − 1 ) τ ( p ) ∏ i = 1 n a p i , i |A|=\sum_{p}(-1)^{\tau(p)}\prod_{i=1}^na_{p_i,i} A=p(1)τ(p)i=1napi,i ∣ A ∣ = ∑ p , q ( − 1 ) τ ( p ) + τ ( q ) ∏ i = 1 n a p i , q i |A|=\sum_{p,q}(-1)^{\tau(p)+\tau(q)}\prod_{i=1}^na_{p_i,q_i} A=p,q(1)τ(p)+τ(q)i=1napi,qi

这是由于,交换一个排列中相邻两个数,逆序对奇偶性一定改变。推广到交换任意两个数,逆序对奇偶性也同样必须改变。这样每交换一对,行和列的奇偶性都会改变,但和是不变的。所以我们有等价定义。

当然,还有一种定义是根据代数余子式去计算:

n n n阶行列式中,我们定义 a i , j a_{i,j} ai,j余子式是除去第 i i i行第 j j j列后所得的 n − 1 n-1 n1阶行列式,不妨记作 M i j M_{ij} Mij.
而代数余子式 A i j = ( − 1 ) i + j M i j A_{ij}=(-1)^{i+j}M_{ij} Aij=(1)i+jMij

我们有 ∣ A ∣ = ∑ i = 1 n a k , i A k , i = ∑ i = 1 n a i , k A i , k ( k = 1 , 2 , . . . , n ) |A|=\sum_{i=1}^na_{k,i}A_{k,i}=\sum_{i=1}^na_{i,k}A_{i,k}(k=1,2,...,n) A=i=1nak,iAk,i=i=1nai,kAi,k(k=1,2,...,n)

称为行列式按行(列)展开。证明相对简单。

行列式的本质

我们先来看看矩阵.

旋转矩阵 [ c o s θ − s i n θ s i n θ c o s θ ] \begin{bmatrix} cos_{\theta } & -sin_{\theta }\\ sin_{\theta } & cos_{\theta } \end{bmatrix} [cosθsinθsinθcosθ]
乘上向量,得到 [ c o s θ − s i n θ s i n θ c o s θ ] [ x y ] = [ x ′ y ′ ] \begin{bmatrix} cos_{\theta } & -sin_{\theta }\\ sin_{\theta } & cos_{\theta } \end{bmatrix}\begin{bmatrix} x \\ y\end{bmatrix}=\begin{bmatrix} x' \\ y'\end{bmatrix} [cosθsinθsinθcosθ][xy]=[xy]

事实上,在线性代数中,我们把这样一个变换称为改变了基。

推移、平移等都可以看做是改变了基。

而行列式,就可以描述为一个矩阵给基带来变化的伸缩因子

例如,对于旋转矩阵而言,它的行列式就是
∣ c o s θ − s i n θ s i n θ c o s θ ∣ = c o s θ 2 + s i n θ 2 = 1 \begin{vmatrix} cos_{\theta } & -sin_{\theta }\\ sin_{\theta } & cos_{\theta } \end{vmatrix} = cos_{\theta}^2+sin_{\theta}^2=1 cosθsinθsinθcosθ=cosθ2+sinθ2=1.

所以可见,旋转并不改变基的大小,仅仅改变方向。

行列式的性质
  1. 上三角矩阵/下三角矩阵的行列式值是对角线元素的乘积.

  2. 交换行列式任意两行,行列式值取反.

  3. 对一行乘上一个固定系数 k k k,等价于行列式值乘 k k k.

  4. 行列式可割。

根据以上性质,可以运用高斯消元求解。时间复杂度 O ( n 3 ) O(n^3) O(n3).

矩阵可逆

根据 ∣ A ∣ |A| A的大小,依据行列式的本质可以知道:

  1. ∣ A ∣ > 1 |A|\gt 1 A>1,实际上是放大图形。
  2. ∣ A ∣ = 1 |A|=1 A=1,图形不变。
  3. 0 &lt; ∣ A ∣ &lt; 1 0\lt |A|\lt 1 0<A<1,实际上是缩小图形。
  4. ∣ A ∣ = 0 |A|=0 A=0,图形不可逆。
  5. ∣ A ∣ &lt; 0 |A|\lt0 A<0,在改变左右手法则后依据 ∣ A ∣ &gt; 0 |A|\gt 0 A>0进行判断。

即当 ∣ A ∣ = 0 |A|=0 A=0时,没有任何矩阵可以将乘以 ∣ A ∣ = 0 |A|=0 A=0的矩阵还原。

并且当 ∣ A ∣ ≠ 0 |A|\neq 0 A̸=0时,存在唯一的逆矩阵, A − 1 = 1 ∣ A ∣ A ∗ A^{-1}=\frac{1}{|A|}A* A1=A1A

证明:

  • 约定 A ∗ A^* A A A A的伴随矩阵, A i j A_{ij} Aij表示 a i j a_{ij} aij的代数余子式

  • 则根据代数余子式及相关行列式的性质,得到 ∑ k = 1 n a i , k A j , k = { 0 ,  if  i ≠ j ∣ A ∣  if  i = j ( i , j = 1 , 2 , . . . , n ) \sum_{k=1}^na_{i,k}A_{j,k}=\begin{cases} 0, &amp; \text{ if } i \neq j \\ |A| &amp; \text{ if }i=j \end{cases}(i,j=1,2,...,n) k=1nai,kAj,k={0,A if i̸=j if i=j(i,j=1,2,...,n)

  • 所以有 A ∗ A = A A ∗ = ∣ A ∣ I A^*A=AA^*=|A|I AA=AA=AI

  • ∣ A ∣ ≠ 0 |A|\neq 0 A̸=0时,两边除以 ∣ A ∣ |A| A得到 ( 1 ∣ A ∣ A ∗ ) ⋅ A = I (\frac{1}{|A|}A^*)·A=I (A1A)A=I.

  • 所以得到 1 ∣ A ∣ A ∗ \frac{1}{|A|}A^* A1A A A A的逆矩阵.

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值