证明:矩阵的逆的伴随=矩阵的伴随的逆=矩阵除以它的行列式

本文证明了矩阵的逆的伴随等于矩阵的伴随的逆,也等于矩阵除以它的行列式,即(A^(-1))^* = (A^*)^(-1) = |A|A。通过矩阵伴随的定义和行列式的性质,详细推导得出结论。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

证明 ( A − 1 ) ∗ = ( A ∗ ) − 1 = A ∣ A ∣ (A^{-1})^*=(A^*)^{-1}=\displaystyle\frac{A}{|A|} (A1)=(A)1=AA

证明如下:

  1. 伴随矩阵的定义有: ( a A ) ∗ = a n − 1 A ∗ (aA)^*=a^{n-1}A^* (aA)=an1A
  2. 由1得: ( A − 1 ) ∗ = ( A ∗ ∣ A ∣ ) ∗ = ( A ∗ ) ∗ ∣ A ∣ n −
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值