证明 ( A − 1 ) ∗ = ( A ∗ ) − 1 = A ∣ A ∣ (A^{-1})^*=(A^*)^{-1}=\displaystyle\frac{A}{|A|} (A−1)∗=(A∗)−1=∣A∣A 证明如下: 伴随矩阵的定义有: ( a A ) ∗ = a n − 1 A ∗ (aA)^*=a^{n-1}A^* (aA)∗=an−1A∗ 由1得: ( A − 1 ) ∗ = ( A ∗ ∣ A ∣ ) ∗ = ( A ∗ ) ∗ ∣ A ∣ n −