二阶矩过程

\qquad 设随机过程 X T = { X ( t ) , t ∈ T } X_T=\{X(t),t\in T\} XT={X(t),tT}对于任意 t ∈ T t\in T tT,E[X(t)]存在,则称函数: m X ( t ) = E [ X ( t ) ] , t ∈ T m_X(t)=E[X(t)],\qquad t\in T mX(t)=E[X(t)],tT \qquad X T X_T XT的均值函数。
\qquad 若对任意的 t ∈ T t\in T tT E [ X ( t ) ] 2 E[X(t)]^2 E[X(t)]2存在,则称 X T X_T XT二阶矩过程。则:
B X ( s , t ) = E [ { X ( s ) − m X ( s ) } − { X ( t ) − m X ( t ) } ] , s , t ∈ T B_X(s,t)=E[\{X(s)-m_X(s)\}-\{X(t)-m_X(t)\}],\qquad s,t\in T BX(s,t)=E[{X(s)mX(s)}{X(t)mX(t)}],s,tT \qquad X T X_T XT协方差函数
D X ( t ) = B X ( t , t ) = E [ X ( t ) − m X ( t ) ] 2 , t ∈ T D_X(t)=B_X(t,t)=E[X(t)-m_X(t)]^2,\qquad t\in T DX(t)=BX(t,t)=E[X(t)mX(t)]2,tT \qquad X T X_T XT方差函数
R X ( s , t ) = E [ X ( s ) X ( t ) ] , s , t ∈ T R_X(s,t)=E[X(s)X(t)] , \qquad s,t\in T RX(s,t)=E[X(s)X(t)],s,tT \qquad X T X_T XT相关函数
\qquad 均值函数 m X ( t ) m_X(t) mX(t)反应的是随机过程 { X ( t ) , t ∈ T } \{X(t),t\in T\} {X(t),tT} t t t时刻的平均值,方差函数 D X ( t ) D_X(t) DX(t)反应的是随机过程在 t t t时刻对均值函数 m X ( t ) m_X(t) mX(t)的偏离程度,协方差函数 B X ( s , t ) B_X(s,t) BX(s,t)和相关函数 R X ( s , t ) R_X(s,t) RX(s,t)反应的是随机过程在时刻 s s s和时刻 t t t时的线性相关程度。

参考文献
[1] 刘次华. 随机过程.第5版[M]. 华中理工大学出版社, 2014.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值