\qquad
设随机过程
X
T
=
{
X
(
t
)
,
t
∈
T
}
X_T=\{X(t),t\in T\}
XT={X(t),t∈T}对于任意
t
∈
T
t\in T
t∈T,E[X(t)]存在,则称函数:
m
X
(
t
)
=
E
[
X
(
t
)
]
,
t
∈
T
m_X(t)=E[X(t)],\qquad t\in T
mX(t)=E[X(t)],t∈T
\qquad
为
X
T
X_T
XT的均值函数。
\qquad
若对任意的
t
∈
T
t\in T
t∈T,
E
[
X
(
t
)
]
2
E[X(t)]^2
E[X(t)]2存在,则称
X
T
X_T
XT为二阶矩过程。则:
B
X
(
s
,
t
)
=
E
[
{
X
(
s
)
−
m
X
(
s
)
}
−
{
X
(
t
)
−
m
X
(
t
)
}
]
,
s
,
t
∈
T
B_X(s,t)=E[\{X(s)-m_X(s)\}-\{X(t)-m_X(t)\}],\qquad s,t\in T
BX(s,t)=E[{X(s)−mX(s)}−{X(t)−mX(t)}],s,t∈T
\qquad
为
X
T
X_T
XT的协方差函数
D
X
(
t
)
=
B
X
(
t
,
t
)
=
E
[
X
(
t
)
−
m
X
(
t
)
]
2
,
t
∈
T
D_X(t)=B_X(t,t)=E[X(t)-m_X(t)]^2,\qquad t\in T
DX(t)=BX(t,t)=E[X(t)−mX(t)]2,t∈T
\qquad
为
X
T
X_T
XT的方差函数
R
X
(
s
,
t
)
=
E
[
X
(
s
)
X
(
t
)
]
,
s
,
t
∈
T
R_X(s,t)=E[X(s)X(t)] , \qquad s,t\in T
RX(s,t)=E[X(s)X(t)],s,t∈T
\qquad
为
X
T
X_T
XT的相关函数
\qquad
均值函数
m
X
(
t
)
m_X(t)
mX(t)反应的是随机过程
{
X
(
t
)
,
t
∈
T
}
\{X(t),t\in T\}
{X(t),t∈T}在
t
t
t时刻的平均值,方差函数
D
X
(
t
)
D_X(t)
DX(t)反应的是随机过程在
t
t
t时刻对均值函数
m
X
(
t
)
m_X(t)
mX(t)的偏离程度,协方差函数
B
X
(
s
,
t
)
B_X(s,t)
BX(s,t)和相关函数
R
X
(
s
,
t
)
R_X(s,t)
RX(s,t)反应的是随机过程在时刻
s
s
s和时刻
t
t
t时的线性相关程度。
参考文献
[1] 刘次华. 随机过程.第5版[M]. 华中理工大学出版社, 2014.