反对称矩阵及其矩阵指数函数

1.反对称矩阵
\qquad 假设矩阵 A A A n n n阶方阵,若有 A T = − A A^T=-A AT=A,则称矩阵 A A A为反对称矩阵。
2.向量的反对称矩阵
\qquad 两个三维列向量 V 1 = [ V 1 x   V 1 y   V 1 z   ] T V_1=[V_{1x}\ V_{1y}\ V_{1z}\ ]^T V1=[V1x V1y V1z ]T V 2 = [ V 2 x   V 2 y   V 2 z   ] T V_2=[V_{2x}\ V_{2y}\ V_{2z}\ ]^T V2=[V2x V2y V2z ]T之间的叉积为: V 1 × V 2 = ∣ i j k V 1 x V 1 y V 1 z V 2 x V 2 y V 2 z ∣ = ∣ V 1 y V 2 z − V 1 z V 2 y − ( V 1 x V 2 z − V 1 z V 2 x ) V 1 x V 2 y − V 1 y V 2 x ∣ (1) V_1 \times V_2= \begin{vmatrix} i&j&k\\ V_{1x}&V_{1y}&V_{1z}\\ V_{2x}&V_{2y}&V_{2z} \end{vmatrix} =\begin{vmatrix} V_{1y}V_{2z}-V_{1z}V_{2y} \\-(V_{1x}V_{2z}-V_{1z}V_{2x}) \\V_{1x}V_{2y}-V_{1y}V_{2x}\end{vmatrix} \tag{1} V1×V2=iV1xV2xjV1yV2ykV1zV2z=V1yV2zV1zV2y(V1xV2zV1zV2x)V1xV2yV1yV2x(1) \qquad 构造由向量 V 1 V_1 V1中各元素构成的特殊矩阵,其与向量 V 2 V_2 V2的矩阵乘法为: [ 0 − V 1 z V 1 y V 1 z 0 − V 1 x − V 1 y V 1 x 0 ] [ V 2 x V 2 y V 2 z ] = [ V 1 y V 2 z − V 1 z V 2 y − ( V 1 x V 2 z − V 1 z V x ) V 1 x V 2 y − V 1 y V 2 x ] (2) \begin{bmatrix} 0&-V_{1z}&V_{1y}\\ V_{1z}&0&-V_{1x}\\ -V_{1y}&V_{1x}&0\end{bmatrix}\begin{bmatrix}V_{2x}\\ V_{2y}\\ V_{2z} \end{bmatrix}=\begin{bmatrix} V_{1y}V_{2z}-V_{1z}V_{2y} \\-(V_{1x}V_{2z}-V_{1z}V_{x}) \\V_{1x}V_{2y}-V_{1y}V_{2x}\end{bmatrix} \tag{2} 0V1zV1yV1z0V1xV1yV1x0V2xV2yV2z=V1yV2zV1zV2y(V1xV2zV1zVx)V1xV2yV1yV2x(2) \qquad 可以看出此时式(1)和式(2)右侧结果形式完全相同。将式(2)左侧的特殊矩阵记作: V × = [ 0 − V z V y V z 0 − V x − V y V x 0 ] (3) V\times=\begin{bmatrix} 0&-V_z&Vy\\V_z&0&-V_x\\-V_y&V_x&0\end{bmatrix} \tag{3} V×=0VzVyVz0VxVyVx0(3) \qquad 并将其称为向量 V = [ V x   V y   V z ] T V=[V_x\ V_y\ V_z]^T V=[Vx Vy Vz]T的反对称矩阵。
\qquad 引入反对称矩阵的概念后,两个向量的叉乘运算即可表示为前一个向量的反对称矩阵与后一个向量的矩阵乘法运算。即: V 1 × V 2 = ( V 1 × ) V 2 (4) V_1\times V_2=(V_1\times)V_2 \tag{4} V1×V2=(V1×)V2(4) \qquad V V V是实向量,则有: ( V × ) H = ( V × ) T = − ( V × ) (5) (V\times)^H=(V\times)^T=-(V\times) \tag{5} (V×)H=(V×)T=(V×)(5) \qquad 其中 H H H表示共轭转置。可进一步推出: ( V × ) H ( V × ) = ( V × ) ( V × ) H = [ V y 2 + V z 2 − V x V y − V x V z − V x V y V x 2 + V z 2 − V y V z − V x V z − V y V z V x 2 + V y 2 ] (6) (V\times)^H(V\times)=(V\times)(V\times)^H=\begin{bmatrix} V_y^2+V_z^2& -V_xV_y &-V_xV_z\\ -V_xV_y&V_x^2+V_z^2&-V_yV_z\\-V_xV_z&-V_yV_z&V_x^2+V_y^2 \end{bmatrix} \tag{6} (V×)H(V×)=(V×)(V×)H=Vy2+Vz2VxVyVxVzVxVyVx2+Vz2VyVzVxVzVyVzVx2+Vy2(6) \qquad 可知反对称矩阵 ( V × ) (V\times) (V×)同时还是正规矩阵。由正规矩阵的性质可知,存在酉矩阵 U U U使得 ( V × ) (V\times) (V×)酉相似于对角阵,且不同特征值对应的特征向量相互正交。
\qquad 反 对 称 矩 阵 ( V × ) 反对称矩阵(V\times) (V×)的特征多项式为: f ( λ ) = d e t ( λ I − ( A × ) ) = ∣ λ V z − V y − V z λ V x V y − V x λ ∣ = λ 3 + ( V x 2 + V y 2 + V z 2 ) λ = λ 3 + v 2 λ (7) \begin{aligned}f(\lambda)=det(\lambda I-(A\times)) &=\begin{vmatrix} \lambda &V_z& -V_y\\ -V_z &\lambda &V_x\\V_y&-V_x&\lambda\end{vmatrix} \\&=\lambda^3+(V_x^2+V_y^2+V_z^2)\lambda\\&=\lambda^3+v^2\lambda \end{aligned} \tag{7} f(λ)=det(λI(A×))=λVzVyVzλVxVyVxλ=λ3+(Vx2+Vy2+Vz2)λ=λ3+v2λ(7) \qquad 其中 v = ∣ V ∣ = V x 2 + V y 2 + V z 2 v=|V|=\sqrt{V_x^2+V_y^2+V_z^2} v=V=Vx2+Vy2+Vz2 为向量 V V V的模。
\qquad 令特征多项式 f ( λ ) = 0 f(\lambda)=0 f(λ)=0,可得矩阵 ( V × ) (V\times) (V×)的特征值为: λ 1 = 0 λ 2 , 3 = ± j v (8) \lambda_1=0 \qquad \lambda_{2,3}=\pm jv \tag{8} λ1=0λ2,3=±jv(8) \qquad λ = 0 \lambda=0 λ=0时,对应的特征向量满足: ( 0 V z − V y − V z 0 V x V y − V x 0 ) ( x 1 x 2 x 3 ) = ( 0 0 0 ) (9) \begin{pmatrix} 0 &V_z& -V_y\\ -V_z &0 &V_x\\V_y&-V_x&0 \end{pmatrix} \begin{pmatrix} x_1\\x_2\\x_3\end{pmatrix}=\begin{pmatrix}0\\0\\0\end{pmatrix} \tag{9} 0VzVyVz0VxVyVx0x1x2x3=000(9) \qquad 对应的特征向量可取: u 1 = ( V x V y V z ) (10) u_1=\begin{pmatrix} V_x\\V_y\\V_z\end{pmatrix} \tag{10} u1=VxVyVz(10) \qquad λ = j v \lambda= jv λ=jv时,对应的特征向量满足: ( j v − V z V y V z j v − V x − V y V x j v ) ( x 1 x 2 x 3 ) = ( 0 0 0 ) ⇒ ( j v − V z V y 0 V x 2 + V y 2 V y V z − j v V x 0 V y V z + j v V x V x 2 + V z 2 ) ( x 1 x 2 x 3 ) = ( 0 0 0 ) (11) \begin{aligned} &\begin{pmatrix} jv &-V_z& V_y\\ V_z &jv &-V_x\\-V_y&V_x&jv \end{pmatrix} \begin{pmatrix} x_1\\x_2\\x_3\end{pmatrix}=\begin{pmatrix}0\\0\\0\end{pmatrix} \\ \rArr&\begin{pmatrix} jv &-V_z& V_y\\ 0 &V_x^2+V_y^2 &V_yV_z-jvV_x\\0&V_yV_z+jvV_x&V_x^2+V_z^2 \end{pmatrix} \begin{pmatrix} x_1\\x_2\\x_3\end{pmatrix}=\begin{pmatrix}0\\0\\0\end{pmatrix} \end{aligned} \tag{11} jvVzVyVzjvVxVyVxjvx1x2x3=000jv00VzVx2+Vy2VyVz+jvVxVyVyVzjvVxVx2+Vz2x1x2x3=000(11) \qquad 对应的特征向量可取: u 2 = ( − V x V z − j v V y − V y V z + j v V x V x 2 + V y 2 ) (12) u_2=\begin{pmatrix} -V_xV_z-jvV_y\\-V_yV_z+jvV_x\\V_x^2+V_y^2\end{pmatrix} \tag{12} u2=VxVzjvVyVyVz+jvVxVx2+Vy2(12) \qquad 同理,当 λ = − j v \lambda= -jv λ=jv时,对应特征向量可取: u 3 = ( − V x V z + j v V y − V y V z − j v V x V x 2 + V y 2 ) (13) u_3=\begin{pmatrix} -V_xV_z+jvV_y\\-V_yV_z-jvV_x\\V_x^2+V_y^2\end{pmatrix} \tag{13} u3=VxVz+jvVyVyVzjvVxVx2+Vy2(13) \qquad 显然,若 u i ( i = 1 , 2 , 3 ) u_i(i=1,2,3) ui(i=1,2,3)是反对称矩阵 ( V × ) (V\times) (V×)对应特征值 λ i \lambda_i λi的特征向量,那么 k u i ( k ≠ 0 ) ku_i(k\ne0) kui(k=0)也应该是对应于 λ i \lambda_i λi的特征向量。因此,反对称矩阵 ( V × ) (V\times) (V×)的特征向量并不唯一。
\qquad 记: U = [ u 1   u 2   u 3 ] Λ = d i a g ( λ 1   λ 2   λ 3 ) (14) U=[u_1\ u_2\ u_3] \qquad \varLambda=diag(\lambda_1\ \lambda_2\ \lambda_3) \tag{14} U=[u1 u2 u3]Λ=diag(λ1 λ2 λ3)(14) \qquad V x = V y = 0 V_x=V_y=0 Vx=Vy=0,取反对称矩阵 ( V × ) (V\times) (V×)的单位正交特征向量: u 1 = [ 0 0 1 ] u 2 = 1 2 [ 1 − j 1 ] u 3 = 1 2 [ 1 j 1 ] (15) u_1=\begin{bmatrix} 0\\0\\1\end{bmatrix} \qquad u_2=\frac{1}{\sqrt{2}}\begin{bmatrix} 1\\-j\\1\end{bmatrix} \qquad u_3=\frac{1}{\sqrt{2}}\begin{bmatrix} 1\\j\\1\end{bmatrix} \tag{15} u1=001u2=2 11j1u3=2 11j1(15) \qquad 可验证 U H U = I U^HU=I UHU=I,可知 U U U是酉矩阵。
\qquad 由矩阵特征值与特征向量的关系知: ( V × ) U = U Λ (16) (V\times)U=U\varLambda \tag{16} (V×)U=UΛ(16) \qquad 式(16)两遍同时左乘 U − 1 U^{-1} U1的: Λ = U − 1 ( V × ) U (17) \varLambda=U^{-1}(V\times)U \tag{17} Λ=U1(V×)U(17) \qquad 验证了反对称矩阵 ( V × ) (V\times) (V×)可酉相似于对角阵,矩阵 U U U为相应的酉相似变换矩阵。
\qquad 反对称矩阵的幂运算如下: ( V × ) 1 = v 0 ( V × ) ( V × ) 2 = V V T − v 2 I = v 0 ( V × ) 2 ( V × ) 3 = ( V V T − v 2 I ) ( V × ) = V V T ( V × ) − v 2 ( V × ) = V ⋅ 0 1 × 3 − v 2 ( V × ) 2 = − v 2 ( V × ) 2 ( V × ) 4 = ( V × ) 3 ( V × ) = − v 2 ( V × ) 2 ( V × ) 5 = ( V × ) 2 ( V × ) 3 = ( V V T − v 2 I ) ( − v 2 ( V × ) ) = v 4 ( V × ) ( V × ) 6 = ( V × ) 3 ( V × ) 3 = ( − v 2 ( V × ) ) ( − v 2 ( V × ) ) = v 4 ( V × ) 2 ⋮ (18) \begin{aligned} (V\times)^1 &=v^0(V\times) \\ (V\times)^2 &= VV^T-v^2I=v^0(V\times)^2 \\ (V\times)^3 &= (VV^T-v^2I)(V\times)=VV^T(V\times)-v^2(V\times)=V\cdot0_{1\times 3}-v^2(V\times)^2 =-v^2(V\times)^2\\(V\times)^4 &= (V\times)^3(V\times)=-v^2(V\times)^2 \\ (V\times)^5 &=(V\times)^2(V\times)^3= (VV^T-v^2I)(-v^2(V\times))=v^4(V\times)\\ (V\times)^6 &=(V\times)^3(V\times)^3= (-v^2(V\times)) (-v^2(V\times))=v^4(V\times)^2\\ \vdots \end{aligned} \tag{18} (V×)1(V×)2(V×)3(V×)4(V×)5(V×)6=v0(V×)=VVTv2I=v0(V×)2=(VVTv2I)(V×)=VVT(V×)v2(V×)=V01×3v2(V×)2=v2(V×)2=(V×)3(V×)=v2(V×)2=(V×)2(V×)3=(VVTv2I)(v2(V×))=v4(V×)=(V×)3(V×)3=(v2(V×))(v2(V×))=v4(V×)2(18) \qquad 由式(18)可写出通项公式: ( V × ) i = { ( − 1 ) i − 1 2 v i − 1 ( V × ) 2 i=1,3,5, … ( − 1 ) i − 2 2 v i − 2 ( V × ) 2 i=2,4,6, … (19) \begin{aligned}(V\times)^i= \begin{cases} (-1)^{\frac{i-1}{2}}v^{i-1}(V\times)^2 &\text{i=1,3,5,…}\\ (-1)^{\frac{i-2}{2}}v^{i-2}(V\times)^2 &\text{i=2,4,6,…}\end{cases} \end{aligned} \tag{19} (V×)i={(1)2i1vi1(V×)2(1)2i2vi2(V×)2i=1,3,5,i=2,4,6,(19)
3.反对称矩阵的矩阵指数函数
\qquad 根据哈密顿-凯莱定理,矩阵的指数函数 e ( V × ) e^{(V\times)} e(V×)可以展开成 ( V × ) (V\times) (V×)的有限项级数展开式,即: e ( V × ) = ∑ i = 0 ∞ ( V × ) i i ! = k 0 I + k 1 ( V × ) + k 2 ( V × ) 2 (20) e^{(V\times)}=\sum_{i=0}^{\infty} \frac{(V\times)^i}{i!}=k_0I+k_1(V\times)+k_2(V\times)^2 \tag{20} e(V×)=i=0i!(V×)i=k0I+k1(V×)+k2(V×)2(20) \qquad 其中 k 0 , k 1 , k 2 k_0,k_1,k_2 k0,k1,k2为待定系数。
\qquad 由式(17)和式(20)可得: e Λ = e U − 1 ( V × ) U = ∑ i = 0 ∞ ( U − 1 ( V × ) U ) i i ! = U − 1 [ ∑ i = 0 ∞ ( V × ) i i ! ] U = U − 1 e ( V × ) U = U − 1 [ k 0 I + k 1 ( V × ) + k 2 ( V × ) 2 ] U = k 0 U − 1 U + k 1 U − 1 ( V × ) U + k 2 U − 1 ( V × ) 2 U = k o I + k 1 Λ + k 2 Λ 2 (21) \begin{aligned} e^{\varLambda} &=e^{U^{-1}(V\times)U} =\sum_{i=0}^{\infty} \frac{(U^{-1}(V\times)U)^i}{i!} =U^{-1}[\sum_{i=0}^{\infty} \frac{(V\times)^i}{i!}]U \\ &=U^{-1}e^{(V\times)}U= U^{-1}[k_0I+k_1(V\times)+k_2(V\times)^2 ]U \\&=k_0U^{-1}U+k_1U^{-1}(V\times)U+k_2U^{-1}(V\times)^2U \\ &=k_oI+k_1\varLambda+k_2\varLambda^2\end{aligned} \tag{21} eΛ=eU1(V×)U=i=0i!(U1(V×)U)i=U1[i=0i!(V×)i]U=U1e(V×)U=U1[k0I+k1(V×)+k2(V×)2]U=k0U1U+k1U1(V×)U+k2U1(V×)2U=koI+k1Λ+k2Λ2(21) \qquad 将式(21)两边展开成矩阵形式: [ e λ 1 0 0 0 e λ 2 0 0 0 e λ 3 ] = [ k 0 + k 1 λ 1 + k 2 λ 1 2 0 0 0 k 0 + k 1 λ 2 + k 2 λ 2 2 0 0 0 k 0 + k 1 λ 3 + k 2 λ 3 2 ] (22) \begin{bmatrix} e^{\lambda_1}&0&0 \\ 0&e^{\lambda_2}&0 \\ 0&0&e^{\lambda_3} \end{bmatrix}=\begin{bmatrix}k_0+k_1\lambda_1+k_2\lambda_1^2&0&0 \\ 0&k_0+k_1\lambda_2+k_2\lambda_2^2 &0\\ 0&0&k_0+k_1\lambda_3+k_2\lambda_3^2 \\\end{bmatrix} \tag{22} eλ1000eλ2000eλ3=k0+k1λ1+k2λ12000k0+k1λ2+k2λ22000k0+k1λ3+k2λ32(22) \qquad 将式(8)带入式(22)得: { e 0 = k 0 e j v = k 0 + k 1 ( j v ) + k 2 ( j v ) 2 e − j v = k 0 + k 1 ( − j v ) + k 2 ( − j v ) 2 即 { k 0 = 1 k 0 + k 1 ( j v ) − k 2 v 2 = c o s v + j s i n v k 0 − k 1 ( j v ) − k 2 v 2 = c o s v − j s i n v (23) \begin{cases}e^0 =k_0\\e^{jv}=k_0+k_1(jv)+k_2(jv)^2 \\ e^{-jv}=k_0+k_1(-jv)+k_2(-jv)^2\end{cases} 即\begin{cases} k_0 =1 \\k_0+k_1(jv)-k_2v^2=cosv+jsinv \\ k_0-k_1(jv)-k_2v^2=cosv-jsinv \end{cases} \tag{23} e0=k0ejv=k0+k1(jv)+k2(jv)2ejv=k0+k1(jv)+k2(jv)2k0=1k0+k1(jv)k2v2=cosv+jsinvk0k1(jv)k2v2=cosvjsinv(23) \qquad 由式(23)解得待定系数: k 0 = 1 , k 1 = s i n v v , k 2 = 1 − c o s v v 2 (24) k_0=1,k_1=\frac{sinv}{v},k_2=\frac{1-cosv}{v^2} \tag{24} k0=1,k1=vsinv,k2=v21cosv(24) \qquad 将式(24)回带入式(23),则有反对称矩阵的矩阵函数公式为: e ( V × ) = I + s i n v v ( V × ) + 1 − c o s v v 2 ( V × ) 2 (25) e^{(V\times)}=I+\frac{sinv}{v}(V\times)+\frac{1-cosv}{v^2}(V\times)^2 \tag{25} e(V×)=I+vsinv(V×)+v21cosv(V×)2(25) \qquad 直接将式(19)带入式(20),亦可求得:
e ( V × ) = ∑ i = 0 ∞ ( V × ) i i ! = ( V × ) 0 + 1 1 ! ( V × ) 1 + 1 2 ! ( V × ) 2 + 1 3 ! ( V × ) 3 + 1 4 ! ( V × ) 4 … = ( V × ) 0 + [ 1 1 ! ( V × ) 1 + 1 3 ! ( V × ) 3 + 1 5 ! ( V × ) 5 + … ] + [ 1 2 ! ( V × ) 2 + 1 4 ! ( V × ) 4 + 1 6 ! ( V × ) 6 + … ] = ( V × ) 0 + [ 1 1 ! ( V × ) − v 2 3 ! ( V × ) + v 4 5 ! ( V × ) + … ] + [ 1 2 ! ( V × ) 2 − v 2 4 ! ( V × ) 2 + v 4 6 ! ( V × ) 2 + … ] = I + s i n v v ( V × ) + 1 − c o s v v 2 ( V × ) 2 (26) \begin{aligned} e^{(V\times)}&=\sum_{i=0}^{\infty} \frac{(V\times)^i}{i!}=(V\times)^0+\frac{1}{1!}(V\times)^1+\frac{1}{2!}(V\times)^2+\frac{1}{3!}(V\times)^3+\frac{1}{4!}(V\times)^4…\\ &=(V\times)^0+[\frac{1}{1!}(V\times)^1+\frac{1}{3!}(V\times)^3+\frac{1}{5!}(V\times)^5+…]+[\frac{1}{2!}(V\times)^2+\frac{1}{4!}(V\times)^4+\frac{1}{6!}(V\times)^6+…] \\&=(V\times)^0+[\frac{1}{1!}(V\times)-\frac{v^2}{3!}(V\times)+\frac{v^4}{5!}(V\times)+…]+[\frac{1}{2!}(V\times)^2-\frac{v^2}{4!}(V\times)^2+\frac{v^4}{6!}(V\times)^2+…] \\ &=I+\frac{sinv}{v}(V\times)+\frac{1-cosv}{v^2}(V\times)^2\end{aligned} \tag{26} e(V×)=i=0i!(V×)i=(V×)0+1!1(V×)1+2!1(V×)2+3!1(V×)3+4!1(V×)4=(V×)0+[1!1(V×)1+3!1(V×)3+5!1(V×)5+]+[2!1(V×)2+4!1(V×)4+6!1(V×)6+]=(V×)0+[1!1(V×)3!v2(V×)+5!v4(V×)+]+[2!1(V×)24!v2(V×)2+6!v4(V×)2+]=I+vsinv(V×)+v21cosv(V×)2(26) \qquad 根据式(21)可得: e ( V × ) U = U e Λ = [ e Λ 1 u 1 e Λ 2 u 2 e Λ 3 u 3 ] (27) e^{(V\times)}U=Ue^{\varLambda}=\begin{bmatrix} e^{\varLambda_1}u_1& e^{\varLambda_2}u_2& e^{\varLambda_3}u_3 \end{bmatrix} \tag{27} e(V×)U=UeΛ=[eΛ1u1eΛ2u2eΛ3u3](27) \qquad 对比式(27)与式(16),可知 e ( V × ) e^{(V\times)} e(V×)与反对称矩阵 ( V × ) (V\times) (V×)具有相同的特征向量,均为矩阵 U U U的列向量: { λ 1 ′ = e λ 1 = e 0 = 1 λ 2 ′ = e λ 2 = e j v = c o s v + j s i n v λ 3 ′ = e λ 3 = e − j v = c o s v − j s i n v (28) \begin{cases}\lambda'_1=e^{\lambda_1}= e^0=1 \\ \lambda'_2=e^{\lambda_2}= e^{jv}=cosv+jsinv\\ \lambda'_3=e^{\lambda_3}= e^{-jv}=cosv-jsinv\end{cases}\tag{28} λ1=eλ1=e0=1λ2=eλ2=ejv=cosv+jsinvλ3=eλ3=ejv=cosvjsinv(28) \qquad 由式(28)可知 ( e Λ ) H e Λ = I (e^{\varLambda})^He^{\varLambda}=I (eΛ)HeΛ=I成立,则 e Λ e^{\varLambda} eΛ是酉矩阵。
\qquad V V V是实向量,则 e V × e^{V\times} eV×是实矩阵。同时 e V × e^{V\times} eV×还是单位正交阵,证明如下: [ e ( V × ) ] T e ( V × ) = [ I + s i n v v ( V × ) + 1 − c o s v v 2 ( V × ) 2 ] T e ( V × ) = [ I + s i n v v ( V × ) T + 1 − c o s v v 2 ( ( V × ) 2 ) T ] e ( V × ) = [ I + s i n v v ( − V × ) T + 1 − c o s v v 2 ( ( − V × ) 2 ) T ] e ( V × ) = e ( − V × ) e ( V × ) = I (29) \begin{aligned}[e^{(V\times)}]^T e^{(V\times)} &=[I+\frac{sinv}{v}(V\times)+\frac{1-cosv}{v^2}(V\times)^2]^Te^{(V\times)} \\ &=[I+\frac{sinv}{v}(V\times)^T+\frac{1-cosv}{v^2}((V\times)^2)^T]e^{(V\times)} \\&=[I+\frac{sinv}{v}(-V\times)^T+\frac{1-cosv}{v^2}((-V\times)^2)^T]e^{(V\times)} \\ &= e^{(-V\times)}e^{(V\times)} \\&=I \end{aligned} \tag{29} [e(V×)]Te(V×)=[I+vsinv(V×)+v21cosv(V×)2]Te(V×)=[I+vsinv(V×)T+v21cosv((V×)2)T]e(V×)=[I+vsinv(V×)T+v21cosv((V×)2)T]e(V×)=e(V×)e(V×)=I(29) \qquad d e t ( e ( V × ) ) = e t r ( V × ) = e 0 = I det(e^{(V\times)})=e^{tr(V\times)}=e^0=I det(e(V×))=etr(V×)=e0=I,可以看出三阶单位正交阵只有行列式为1时才可以表示为 e ( V × ) e^{(V\times)} e(V×)的形式。对于行列式为1的单位正交阵我们一般称之为右手直角坐标变换矩阵;反之,行列式为-1的单位正交阵称为左手直角坐标变换矩阵。

参考文献
[1] 同济大学数学系. 工程数学, 线性代数(第6版)[M]. 北京:高等教育出版社, 2014.
[2] 严恭敏, 翁浚. 捷联惯导算法与组合导航原理[M]. 西安:西北工业大学出版社, 2020.

  • 4
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值