视频特征提取(未完)

本文介绍了视频特征提取的关键步骤,包括声音和图像特征提取。在图像特征中,详细讨论了HSV颜色空间的lighting key计算方法,以及在LUV颜色空间中计算协方差矩阵的挑战。此外,还提到了通过计算HSV空间的色度直方图和HSL空间的中位光度来获取视频内容特征的方法。
摘要由CSDN通过智能技术生成

1.前言

视频的特征提取可以分为声音的特征特提取和图像的特征提取(抽取关键帧), 特征提取是一个关键的步骤,为后面机器学习算法的应用提供了基础。

2.特征

(1)lighting key

 multiplying the average value V (in HSV) by the standard deviation of the values V (in HSV).

在HSV颜色空间中,lighting key计算方法为亮度值V的平均值和V的标准差的乘积。

在opencv中提供了:

C++: void meanStdDev(InputArray src, OutputArray mean, OutputArray stddev, InputArray mask=noArray())

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值