众所周知,大模型微调(Large Model Fine-Tuning)是一种机器学习技术,用于提高特定任务的模型性能。本篇我将简单扼要地介绍一下 Fine-Tuning,这里没有羞涩难懂的语言,也不强求深入了解Fine-Tuning的工作原理,目的是用中学生都能看懂的方式讲明白大模型微调 Fine-Tuning究竟是什么回事。
一、什么是Fine-Tuning
在机器学习领域,模型训练是一个耗时且资源密集的过程。如果为了解决特定问题,重新去训练一个从零开始的新模型,那这种方法将会变得耗时,费力且需要消耗大量的资源。那有没有一种相对简易的方法来调教大模型,使它能更好地应对这些特定问题呢?经过众多开发者的努力,大模型微调 Fine-Tuning技术应运而生,使得大模型应对特定问题时,无需再重新训练。
大模型微调通常指的是在一个已经训练好的大型模型基础上,通过额外的训练数据和少量的调整,来提高模型在特定任务上的表现。这样做的好处是,你不需要从头开始训练一个全新的模型,节省了大量的时间和资源。
举个例子:假如你有一辆非常先进的汽车,这辆汽车几乎可以应对各种路况,无论是城市街道还是崎岖山路。这辆汽车就像是一个大语言模型,它通过大量的数据和复杂的算法训练,已经具备了处理各种任务的能力。
但是,现在你想要让这辆汽车更加适应特定的环境,比如说,你想让汽车能适应在雪地上行驶。这时候,你不需要重新设计和制造一辆全新的汽车,只需要对现有的汽车进行一些微调,比如换上雪地轮胎,调整悬挂系统,对一些配件进行调整,以适应雪地环境。大模型的微调也是同样的道理,微调使得大模型能适应新环境的应用。
二、Fine-Tuning的步骤
Fine-tuning 可以理解为对预训练的大模型进行“微调”,让它更适合特定的任务,就像给一个全能的运动员提供专门的训练,让他成为某个项目的冠军一样。
Fine-tuning 的步骤通常包括:
-
选择预训练模型:首先,你需要选择一个已经预训练好的模型作为基础。这些预训练模型已经在大量数据上进行了学习,具备一定的语言理解能力。比如,你可以选择 BERT、GPT 系列等知名的预训练模型。
-
准备数据集:要想让模型学会新的技能,你需要准备一个与特定任务相关的数据集。比如,如果你想让模型学会分类评论的情感(是正面还是负面),你需要收集大量的带有标签(正面或负面)的评论作为数据集。
-
数据预处理:对数据集进行清理和处理,确保数据格式符合模型的要求。这可能包括去除无用信息、标准化文本、划分训练集和验证集等操作。
-
添加任务特定层:根据任务需求,在预训练模型上添加新的神经网络层。例如,如果是分类任务,可以添加一个或多个全连接层,并将输出调整为与类别数相同的维度。
-
冻结预训练参数:在 Fine-tuning 的初期,通常会先冻结预训练模型的参数,只训练新添加的任务特定层。这样做是为了避免破坏预训练模型已经学到的通用语言表示能力。
-
训练模型:使用准备好的数据集开始训练模型。在训练过程中,模型会不断调整任务特定层的参数,以最小化损失函数的值,从而学习特定任务所需的知识。
-
验证和调整:在训练过程中,需要定期使用验证集来评估模型的表现。如果效果不理想,可以调整超参数(如学习率、批次大小等)、改变训练策略或数据集,然后重新训练。
Fine-tuning 就是用你的数据“教”一个大模型做你想让它做的事情,就像老师教学生一样,想让学生变得更聪明,更擅长完成特定任务,就必须对学生进行再教育(微调),我们需要准备好教料(数据集)还有老师(微调方法),然后进行针对性的训练和指导(微调过程),不断调整和优化,直到学生掌握了新技能。
三、Fine-Tuning常用方法
大模型的全量微调与参数高效微调是两种常见的 Fine-tuning 方法,它们都有自己的特点和适用场景。
-
全量微调, 就像你把这个电脑的所有程序都重新安装一遍,然后用大量新的数据来训练它,让它从头开始学习新的任务。
-
参数高效微调,就像你只修改电脑里一些关键的程序,而不是全部重装,然后用少量的数据来训练它,让它在原有基础上更好地完成新的任务。
1. 全量微调和参数高效微调有什么区别?
-
训练时间:全量微调需要更长的时间,因为需要训练所有参数。参数高效微调则更快,因为只需要训练一部分参数。
-
数据需求:全量微调需要大量数据,因为需要重新训练所有参数。参数高效微调则需要较少的数据,因为只需要训练一部分参数。
-
效果:全量微调通常可以获得更好的效果,因为模型可以更好地适应新的任务。参数高效微调则效果可能略差,但可以更快地获得结果。
2. 什么时候选择哪种方法?
- 如果你的任务非常重要,需要最好的效果,那么选择全量微调。
- 如果你的时间有限,或者数据量较少,那么选择参数高效微调。
四、最后分享
AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。
学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。
这里给大家精心整理了一份
全面的AI大模型学习资源
,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享
!
1. 成长路线图&学习规划
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
2. 大模型经典PDF书籍
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)
3. 大模型视频教程
对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。
4. 2024行业报告
行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。
5. 大模型项目实战
学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。
6. 大模型面试题
面试不仅是技术的较量,更需要充分的准备。
在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以
微信扫描下方CSDN官方认证二维码
,免费领取【保证100%免费
】