MiniMax-01技术报告解读(三)预训练

四、预训练

MiniMax-01的预训练过程是其能够在长上下文任务中表现出色的关键。为了构建一个强大的基础模型,MiniMax-01在数据选择、数据格式优化、数据混合策略以及长上下文扩展等方面进行了精心设计和优化。以下是对预训练过程的详细解析。

4.1 数据

MiniMax-01的预训练数据是其成功的基础。为了确保模型的高性能,MiniMax-01在数据质量、数据格式和数据混合策略上进行了多项创新。

4.1.1 预训练语料库

MiniMax-01的预训练语料库涵盖了多种来源,包括学术文献、书籍、网页内容和编程代码。为了确保数据的高质量,MiniMax-01采用了以下策略:

  1. 数据质量增强

通过结合规则清洗和去重程序,MiniMax-01对文档质量进行了严格评估。模型使用前一代MiniMax模型作为奖励标签器,评估文档的连贯性、简洁性、教育价值、帮助性、知识丰富性和类别相关性。最终,MiniMax-01聚焦于三个关键维度:知识深度实用帮助性类别分布,同时将其他指标作为次要验证指标。

  1. 数据格式优化

对于网页和书籍内容,MiniMax-01在提取和清洗后直接使用,无需进一步格式化。对于对话和问答数据,MiniMax-01采用了嵌套文档格式,使用灵活的模板来平衡自然理解与结构一致性。这种设计确保了模型在多种交互模式下的泛化能力。

  1. 数据混合策略

MiniMax-01开发了一种复杂的数据分布调整方法,基于知识深度和帮助性等质量指标进行采样权重调整。实验表明,完全剔除低质量内容可能会对下游任务性能产生负面影响,因此MiniMax-01采用了平衡采样策略,确保高质量内容的优先性,同时保留多样化的类别。

4.1.2 分词

MiniMax-01采用了字节级字节对编码(Byte-level Byte Pair Encoding, BPE)进行分词,词汇表大小为20万。为了提升多语言内容的压缩效率,MiniMax-01对多语言内容进行了上采样。

4.1.3 数据实验

为了系统评估预训练数据质量、格式和组成的影响,MiniMax-01进行了广泛的数据消融实验。通过训练多个小规模MoE模型,MiniMax-01能够隔离和测量单个数据属性的影响,同时保持计算效率。

4.1.4 重复数据的影响

重复数据对模型性能和泛化能力有显著的负面影响。MiniMax-01引入了重复感知实验框架,通过全局去重和按训练计划下采样文档,确保数据效率与最终训练阶段一致。实验表明,低质量数据在训练超过两个epoch后性能显著下降,而高质量数据可以有效地训练多达四个epoch

4.2 训练策略

MiniMax-01的训练策略是其能够在长上下文任务中表现出色的关键。通过精心设计的初始化、学习率调度和长上下文扩展策略,MiniMax-01成功将训练上下文长度扩展到100万token。

在这里插入图片描述

4.2.1 初始预训练

MiniMax-01使用Xavier初始化方法初始化所有模型参数,DeepNorm的缩放因子设置为α=(2N)0.25和β=(8N)-0.25,其中N为层数。模型采用AdamW优化器,β1=0.9,β2=0.95,权重衰减为0.1。训练序列长度为8192,批量大小从初始的1600万逐步增加到7900亿token时的6400万,最终在4.7万亿token时增加到1.28亿。

4.2.2 长上下文扩展

MiniMax-01通过三阶段训练过程,逐步将模型的训练上下文长度扩展到100万token。每个阶段的训练数据混合、RoPE基础频率和训练长度如下表所示:

在这里插入图片描述

在每个阶段的最后20%训练周期中,MiniMax-01混合了10%的高质量长上下文问答数据,以确保模型在长上下文任务中的表现。为了缓解分布变化带来的不稳定性,MiniMax-01采用了源特定权重的线性插值方法,逐步将数据分布过渡到目标分布。

4.2.3 长上下文评估

MiniMax-01在长上下文扩展过程中,使用更复杂的任务评估模型的中间检查点。尽管NIAH(Needle in a Haystack)任务在早期训练阶段就达到了峰值性能,但MiniMax-01通过引入更具挑战性的任务,确保了模型在长上下文处理能力上的持续提升。

在这里插入图片描述


如何系统学习掌握AI大模型?

AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享

1. 成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
在这里插入图片描述

2. 大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

在这里插入图片描述

3. 大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

在这里插入图片描述

4. 2024行业报告

行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。

在这里插入图片描述

5. 大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

6. 大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

在这里插入图片描述

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值