代数数
在数论中,超越数是指任何一个不是代数数的数字(通常它是复数)。它满足以下条件——只要它不是任何一个整系数代数方程的根,它即是超越数。最著名的超越数是e以及π。
超越数
超越数的例子
所有超越数构成的集是一个不可数集。这暗示超越数远多于代数数。可是,现今发现的超越数极少,甚至连π+e, 是不是超越数也不知道,因为要证明一个数是超越数或代数数是十分困难的。
代数函数与超越函数
代数函数是指包含加、减、乘、除和开方等基本算符的数学函数。非代数函数则被称为超越函数。
在数学领域中,超越函数与代数函数相反,是指那些不满足任何以多项式方程的函数,即函数不满足以变量自身的多项式为系数的多项式方程。换句话说,超越函数就是"超出"代数函数范围的函数,也就是说函数不能表示为有限次的加、减、乘、除和开方的运算。
严格的说,关于变量 z 的解析函数 ƒ(z) 是超越函数,如果该函数是关于变量z是代数无关的。
对数和指数函数即为超越函数的例子。超越函数这个名词通常被拿来描述三角函数,例如正弦、余弦、正割、余割、余切、正矢、半正矢等。
非超越函数则称为代数函数。代数函数的例子有多项式和平方根函数。
对代数函数进行不定积分运算能够产生超越函数。如对数函数便是在对双曲角围成的面积研究中,对倒数函数y = 1⁄x不定积分得到的。以此方式得到的双曲函数 sinh, cosh, tanh 都是超越函数。
微分代数的某些研究人员研究不定积分如何产生与某类“标准”函数代数无关的函数,例如将三角函数与多项式的合成取不定积分。
数值解、解析解与非解析解
数值解(numerical solution)
是指在特定条件下通过近似计算得出来的一个数值,是采用某种计算方法,如有限元的方法、 数值逼近、插值的方法 得到的解。
解析解(analytical solution)
又称为闭合解,是给出解的具体函数形式,从解的表达式中就可以算出任何对应值。即包含分式、三角函数、指数、对数甚至无限级数等基本函数的解的形式。给出解的具体函数形式,从解的表达式中就可以算出任何对应值。用来求得解析解的方法称为解析法,解析法是常见的微积分技巧,如分离变量法等。