1. 超越函数的定义:
1.1 代数函数:
如果函数 f ( x ) f(x) f(x) 满足以下代数等式,就是代数函数:
P ( x , y ) = p n ( x ) y n + p n − 1 ( x ) y n − 1 + . . . + p 1 ( x ) y + p 0 ( x ) = 0 , [ 1.1 ] P(x,y) = p_n(x)y^n+p_{n-1}(x)y^{n-1}+...+p_1(x)y+p_0(x)=0,\qquad[1.1] P(x,y)=pn(x)yn+pn−1(x)yn−1+...+p1(x)y+p0(x)=0,[1.1]
也就是说, 如果等式:
p n ( x ) f n ( x ) + p n − 1 ( x ) f n − 1 ( x ) + . . . + p 1 ( x ) f ( x ) + p 0 ( x ) = 0 , [ 1.2 ] p_n(x)f^n(x)+p_{n-1}(x)f^{n-1}(x)+...+p_1(x)f(x)+p_0(x)=0, \qquad[1.2] pn(x)fn(x)+pn−1(x)fn−1(x)+...+p1(x)f(x)+p0(x)=0,[1.2]
对于所有的 x x x在函数 f f f的定义域中都成立,这里 y y y是关于 x x x的函数,等式中的 y n y^n yn或者 f n ( x ) f^n(x) fn(x)的幂 n > = 1 n>=1 n>=1,方程中 y i y^i yi或者 f i ( x ) f^i(x) fi(x)的系数 p i ( x ) p_i(x) pi(x)是关于x的实系数多项式,并且 p n ( x ) p_n(x) pn(x)不等于0,(此处 p i ( x ) p_i(x) pi(x)的次数不必等于 i i i)。
1.2 超越函数:
如果一个函数 f ( x ) f(x) f(x)不是代数函数,就是超越函数,也就是说,它不满足任何形如 [ 1.1 ] [1.1] [1.1]的代数方程;
2. 证明指数函数是超越函数:
可以采用反证法和无限下降法来证明 e x e^x ex是超越函数:
2.1 证明:
假定 e x e^x ex是代数函数,那么会有一组多项式函数 p n ( x ) , p n − 1 ( x ) , p n − 2 ( x ) , . . . , p 1 ( x ) , p 0 ( x ) p_n(x), p_{n-1}(x), p_{n-2}(x),..., p_1(x), p_0(x) pn(x),pn−1(x),pn−2(x),...,p1(x),p0(x),此处 n > = 1 n>=1 n>=1并且 p n ( x ) p_n(x) pn(x)不等于0,使得等式
p n ( x ) ( e x ) n + p n − 1 ( x ) ( e x ) n − 1 + p n − 2 ( x ) ( e x ) n − 2 + . . . + p 1 ( x ) ( e x ) + p 0 ( x ) = 0 , p_n(x)(e^x)^n+p_{n-1}(x)(e^x)^{n-1}+p_{n-2}(x)(e^x)^{n-2}+...+p_1(x)(e^x)+p_0(x)=0, pn(x)(ex)n+pn−1(x)(ex)n−1+pn−2(x)(ex)n−2+...+p1(x)(ex)