构建代理型智能应用需同时理解 A2A 与 MCP 两大协议。
• MCP 为智能体提供工具调用能力。
• A2A 使智能体可以与其他智能体组队协作。
本文将清晰解析 A2A 的核心机制及其与 MCP 的协同方式。
核心概念:
• Agent2Agent (A2A) 协议:实现智能体间的互联通信。
• 模型上下文协议 (MCP):实现智能体与工具/API 的对接。
当两个智能体通过 A2A 对话时,它们可能同时在连接 MCP 服务器。
这种架构下,各组件功能互补而非竞争。
更深入地说,A2A 协议支持多个 AI 智能体协作完成任务,而无需共享以下敏感信息:
• 内部记忆存储
• 思维过程
• 私有工具
智能体之间通过交换上下文、任务状态、操作指令和数据实现协作。
AI 应用可将 A2A 智能体建模为MCP 资源,并通过 AgentCard(智能体档案) 进行表征(下文详述)。
基于此架构,连接 MCP 服务器的智能体可主动发现协作伙伴,并且可以通过 A2A 协议建立点对点连接。
支持 A2A 的远程智能体需发布 “JSON 智能体卡片”,声明其功能特性和认证方式。
客户端据此自动筛选最适合当前任务的协作对象。
A2A协议的优势主要来源于以下几个部分:
• 安全协作机制:隔离敏感信息交换
• 任务状态管理:实时同步执行进度
• 能力发现系统:动态识别协作对象
• 跨框架互操作性:支持 LlamaIndex/CrewAI 等不同框架的智能体协作
并且,它与 MCP 深度集成。作为新兴协议,A2A 正在尝试标准化智能体间协作——正如 MCP 规范了智能体与工具的交互标准。这种标准化将推动:
• 多智能体系统的模块化开发
• 跨组织智能体服务互联
• 分布式任务编排的可靠性