高数考研归纳 - 积分学 - 重积分

点击此处查看高数其他板块总结

Part 1 二重积分

记忆内容

1 概念

(一) 二重积分的定义

∬ D f ( x , y ) d σ = lim ⁡ λ → 0 ∑ i = 1 n f ( ξ i , η i ) Δ σ i \iint\limits_{D} f(x,y)\text{d}\sigma=\lim\limits_{\lambda\to 0} \sum\limits^{n}_{i=1} f(\xi_i,\eta_i)\Delta \sigma_i Df(x,y)dσ=λ0limi=1nf(ξi,ηi)Δσi

  注意:
    (1) λ → 0 ⇒ n → ∞ \lambda\to0\Rightarrow n\to\infty λ0n,反之不对.
    (2) d σ = d x d y \text{d}\sigma=\text{d}x\text{d}y dσ=dxdy.
    (3) lim ⁡ λ → 0 ∑ i = 1 n f ( ξ i , η i ) Δ σ i   \lim\limits_{\lambda\to 0} \sum\limits^{n}_{i=1} f(\xi_i,\eta_i)\Delta \sigma_i\, λ0limi=1nf(ξi,ηi)Δσi   D   \,D\, D的分法、 ( ξ i , η i )   (\xi_i,\eta_i)\, (ξi,ηi)的取法都无关.

(二) 重要关系

  下面的关系用于求   n   \,n\, n项和极限:

    (1) 设 D = { ( x , y ) ∣ 0 ⩽ x ⩽ 1 , 0 ⩽ y ⩽ 1 } D=\{(x,y)|0\leqslant x\leqslant1,0\leqslant y\leqslant 1\} D={(x,y)0x1,0y1},则
lim ⁡ m → ∞ n → ∞ 1 m n ∑ i = 1 m ∑ j = 1 n f ( i m , j n ) = ∬ D f ( x , y ) d x d y = ∫ 0 1 d x ∫ 0 1 f ( x , y ) d y \lim\limits_{m \to \infty \atop n\to\infty} \frac{1}{mn} \sum\limits_{i=1}^{m}\sum\limits_{j=1}^{n}f\bigg(\frac{i}{m},\frac{j}{n}\bigg)=\iint\limits_Df(x,y)\text{d}x\text{d}y=\int^1_0\text{d}x\int^1_0f(x,y)\text{d}y nmlimmn1i=1mj=1nf(mi,nj)=Df(x,y)dxdy=01dx01f(x,y)dy

    特别地,若   m = n \,m=n m=n
lim ⁡ n → ∞ 1 n 2 ∑ i = 1 n ∑ j = 1 n f ( i n , j n ) = ∬ D f ( x , y ) d x d y = ∫ 0 1 d x ∫ 0 1 f ( x , y ) d y \lim\limits_{n\to\infty} \frac{1}{n^2} \sum\limits_{i=1}^{n}\sum\limits_{j=1}^{n}f\bigg(\frac{i}{n},\frac{j}{n}\bigg)=\iint\limits_Df(x,y)\text{d}x\text{d}y=\int^1_0\text{d}x\int^1_0f(x,y)\text{d}y nlimn21i=1nj=1nf(ni,nj)=Df(x,y)dxdy=01dx01f(x,y)dy

    (2) 更一般的关系:
lim ⁡ m → ∞ n → ∞ 1 m n ∑ i = 1 k 1 m ∑ j = 1 k 2 n f ( i m , j n ) = ∬ D f ( x , y ) d x d y = ∫ 0 k 1 d x ∫ 0 k 2 f ( x , y ) d y \lim\limits_{m \to \infty \atop n\to\infty} \frac{1}{mn} \sum\limits_{i=1}^{k_1m}\sum\limits_{j=1}^{k_2n}f\bigg(\frac{i}{m},\frac{j}{n}\bigg)=\iint\limits_Df(x,y)\text{d}x\text{d}y=\int^{k_1}_0\text{d}x\int^{k_2}_0f(x,y)\text{d}y nmlimmn1i=1k1mj=1k2nf(mi,nj)=Df(x,y)dxdy=0k1dx0k2f(x,y)dy

2 性质

(一) 可积条件

  若   f ( x , y )   \,f(x,y)\, f(x,y)在有限闭区域   D   \,D\, D连续,则   f ( x , y )   \,f(x,y)\, f(x,y)   D   \,D\, D一定可积,反之不成立.

(二) 简单性质

  设   f ( x , y ) \,f(x,y) f(x,y) g ( x , y )   g(x,y)\, g(x,y)在平面有界闭区域   D   \,D\, D上可积,则
∬ D [ f ( x , y ) ± g ( x , y ) ] d x d y = ∬ D f ( x , y ) d x d y ± ∬ D g ( x , y ) d x d y \iint\limits_D[f(x,y)\pm g(x,y)]\text{d}x\text{d}y=\iint\limits_Df(x,y)\text{d}x\text{d}y\pm\iint\limits_Dg(x,y)\text{d}x\text{d}y D[f(x,y)±g(x,y)]dxdy=Df(x,y)dxdy±Dg(x,y)dxdy ∬ D k f ( x , y ) d x d y = k ∬ D f ( x , y ) d x d y \iint\limits_Dkf(x,y)\text{d}x\text{d}y=k\iint\limits_Df(x,y)\text{d}x\text{d}y Dkf(x,y)dxdy=kDf(x,y)dxdy ∬ D f ( x , y ) d x d y = ∬ D 1 f ( x , y ) d x d y + ∬ D 2 f ( x , y ) d x d y      ( D = D 1 + D 2 , D 1 ∩ D 2 = ∅ ) \iint\limits_Df(x,y)\text{d}x\text{d}y=\iint\limits_{D_1}f(x,y)\text{d}x\text{d}y+\iint\limits_{D_2}f(x,y)\text{d}x\text{d}y\;\;(D=D_1+D_2,D_1\cap D_2=\varnothing) Df(x,y)dxdy=D1f(x,y)dxdy+D2f(x,y)dxdy(D=D1+D2,D1D2=)

∬ D d x d y = A      ( A 为 区 域   D   的 面 积 ) \iint\limits_D\text{d}x\text{d}y=A\;\;(A为区域\,D\,的面积) Ddxdy=A(AD)

(三) 重要性质
不等关系

  平面有界闭区域   D   \,D\, D上有   f ( x , y ) \,f(x,y) f(x,y) g ( x , y )   g(x,y)\, g(x,y)
f ( x , y ) ⩽ g ( x , y ) ⇒ ∬ D f ( x , y ) d x d y ⩽ ∬ D g ( x , y ) d x d y f(x,y)\leqslant g(x,y)\Rightarrow\iint\limits_{D}f(x,y)\text{d}x\text{d}y\leqslant\iint\limits_{D}g(x,y)\text{d}x\text{d}y f(x,y)g(x,y)Df(x,y)dxdyDg(x,y)dxdy

    特别地,
{ f ( x , y ) 、 g ( x , y ) ∈ C ( D ) f ( x , y ) ⩽ g ( x , y ) f ( x , y ) ≢ g ( x , y ) ⇒ ∬ D f ( x , y ) d x d y < ∬ D g ( x , y ) d x d y \begin{cases}f(x,y)、g(x,y)\in C(D)\\ f(x,y)\leqslant g(x,y)\\ f(x,y)\not\equiv g(x,y)\end{cases}\Rightarrow\iint\limits_{D}f(x,y)\text{d}x\text{d}y<\iint\limits_{D}g(x,y)\text{d}x\text{d}y f(x,y)g(x,y)C(D)f(x,y)g(x,y)f(x,y)g(x,y)Df(x,y)dxdy<Dg(x,y)dxdy

∣ ∬ D f ( x , y ) d σ ∣ ⩽ ∬ D ∣ f ( x , y ) ∣ d σ \bigg|\iint\limits_D f(x,y)\text{d}\sigma\bigg|\leqslant \iint\limits_D \big|f(x,y)\big|\text{d}\sigma Df(x,y)dσDf(x,y)dσ

积分中值定理

  设   D   \,D\, D为平面有限闭区域, f ( x , y )   f(x,y)\, f(x,y)   D   \,D\, D上连续, A   A\, A表示区域   D   \,D\, D的面积,
  则存在   ( ξ , η ) ∈ D   \,(\xi,\eta)\in D\, (ξ,η)D,使得:
∬ D f ( x , y ) d x d y = f ( ξ , η ) ⋅ A \iint\limits_{D}f(x,y)\text{d}x\text{d}y=f(\xi,\eta)\cdot A Df(x,y)dxdy=f(ξ,η)A

对称奇偶性质

  (1) 设   D   \,D\, D关于   y   \,y\, y轴对称 (即关于变量   x   \,x\, x对称),其中位于   y   \,y\, y轴右侧区域为   D 1 \,D_1 D1,则: ∬ D f ( x , y ) d x d y = { 0 , f ( x , y ) = − f ( − x , y ) 2 ∬ D 1 f ( x , y ) d x d y , f ( x , y ) = f ( − x , y ) \iint\limits_Df(x,y)\text{d}x\text{d}y=\begin{cases} 0,&f(x,y)=-f(-x,y)\\ 2\iint\limits_{D_1}f(x,y)\text{d}x\text{d}y,&f(x,y)=f(-x,y)\end{cases} Df(x,y)dxdy=02D1f(x,y)dxdyf(x,y)=f(x,y)f(x,y)=f(x,y)

  (2) 设   D   \,D\, D关于   x   \,x\, x轴对称 (即关于变量   y   \,y\, y对称),其中位于   x   \,x\, x轴上侧区域为   D 1 \,D_1 D1,则: ∬ D f ( x , y ) d x d y = { 0 , f ( x , y ) = − f ( x , − y ) 2 ∬ D 1 f ( x , y ) d x d y , f ( x , y ) = f ( x , − y ) \iint\limits_Df(x,y)\text{d}x\text{d}y=\begin{cases} 0,&f(x,y)=-f(x,-y)\\ 2\iint\limits_{D_1}f(x,y)\text{d}x\text{d}y,&f(x,y)=f(x,-y)\end{cases} Df(x,y)dxdy=02D1f(x,y)dxdyf(x,y)=f(x,y)f(x,y)=f(x,y)

  (3) 设   D   \,D\, D关于直线   y = x   \,y=x\, y=x对称,则:
∬ D f ( x , y ) d x d y = ∬ D f ( y , x ) d x d y \iint\limits_Df(x,y)\text{d}x\text{d}y=\iint\limits_Df(y,x)\text{d}x\text{d}y Df(x,y)dxdy=Df(y,x)dxdy

  (4) 设   D   \,D\, D关于直线   y = − x   \,y=-x\, y=x对称,则:
∬ D f ( x , y ) d x d y = ∬ D f ( − y , − x ) d x d y \iint\limits_Df(x,y)\text{d}x\text{d}y=\iint\limits_Df(-y,-x)\text{d}x\text{d}y Df(x,y)dxdy=Df(y,x)dxdy

  (5) 轮换对称性

    轮换:
∬ D x y f ( x , y ) d x d y = ∬ D y x f ( y , x ) d y d x \iint\limits_{D_{xy}}f(x,y)\text{d}x\text{d}y=\iint\limits_{D_{yx}}f(y,x)\text{d}y\text{d}x Dxyf(x,y)dxdy=Dyxf(y,x)dydx

  理解:显然,对调字母   x \,x x y   y\, y并不会改变积分值. 即积分值与变量名无关.

    轮换对称性
      若把字母对调以后,积分区域   D   \,D\, D不变( D   D\, D关于   y = x   \,y=x\, y=x对称),则:
∬ D f ( x , y ) d σ = ∬ D f ( y , x ) d σ \iint\limits_{D}f(x,y)\text{d}\sigma=\iint\limits_{D}f(y,x)\text{d}\sigma Df(x,y)dσ=Df(y,x)dσ

  理解:轮换对称性本质上就是轮换的效果,只不过由于积分区域在轮换以后不发生变化,所以最后只表现出被积函数发生变化.

3 计算方法

(一) 直角坐标法

  X型:若区域   D   \,D\, D表示为   D = { ( x , y )   ∣   a ⩽ x ⩽ b , φ 1 ( x ) ⩽ y ⩽ φ 2 ( x ) } \,D=\{(x,y)\,|\,a\leqslant x\leqslant b,\varphi_1(x)\leqslant y\leqslant\varphi_2(x)\} D={(x,y)axb,φ1(x)yφ2(x)},则
∬ D f ( x , y ) d σ = ∫ a b d x ∫ φ 1 ( x ) φ 2 ( x ) f ( x , y ) d y . \iint\limits_Df(x,y)\text{d}\sigma=\int^b_a\text{d}x\int^{\varphi_2(x)}_{\varphi_1(x)}f(x,y)\text{d}y. Df(x,y)dσ=abdxφ1(x)φ2(x)f(x,y)dy.

  Y型:若区域   D   \,D\, D表示为   D = { ( x , y )   ∣   φ 1 ( y ) ⩽ x ⩽ φ 2 ( y ) , c ⩽ x ⩽ d } \,D=\{(x,y)\,|\,\varphi_1(y)\leqslant x\leqslant\varphi_2(y),c\leqslant x\leqslant d\} D={(x,y)φ1(y)xφ2(y),cxd},则
∬ D f ( x , y ) d σ = ∫ c d d y ∫ φ 1 ( y ) φ 2 ( y ) f ( x , y ) d x . \iint\limits_Df(x,y)\text{d}\sigma=\int^d_c\text{d}y\int^{\varphi_2(y)}_{\varphi_1(y)}f(x,y)\text{d}x. Df(x,y)dσ=cddyφ1(y)φ2(y)f(x,y)dx.

  注意
    (1) 具体题目选用X型和选用Y型计算,将有可能直接影响到运算量.
    (2) X型在题目中又被称为   y   \,y\, y   x   \,x\, x的累次积分.
    (3) Y型在题目中又被称为   x   \,x\, x   y   \,y\, y的累次积分.

(二) 极坐标法

  使用特征
     1 o    D   1^o\;D\, 1oD的边界曲线含   x 2 + y 2   \,x^2+y^2\, x2+y2
     2 o    2^o\; 2o被积函数   f ( x )   \,f(x)\, f(x)   x 2 + y 2   \,x^2+y^2\, x2+y2
     3 o    3^o\; 3o被积函数   f ( x )   \,f(x)\, f(x)   y x   \,\frac{y}{x}\, xy   x y   \,\frac{x}{y}\, yx (相除可以约掉   r \,r r).

  变换
    法1 (坐标在圆心):
{ x = r cos θ y = r sin θ \begin{cases}x=r\text{cos}\theta\\ y=r\text{sin}\theta\end{cases} {x=rcosθy=rsinθ
    法2 (坐标在   ( a , b )   \,(a,b)\, (a,b)):
{ x − a = r cos θ y − b = r sin θ \begin{cases}x-a=r\text{cos}\theta\\ y-b=r\text{sin}\theta\end{cases} {xa=rcosθyb=rsinθ
    注意:两种变换   θ   \,\theta\, θ   r   \,r\, r的范围不同.
      如: x 2 + y 2 = 2 x ⇔ ( x − 1 ) 2 + y 2 = 1 x^2+y^2=2x\Leftrightarrow (x-1)^2+y^2=1 x2+y2=2x(x1)2+y2=1

       采用法1的变化方式:
{ x = r cos θ y = r sin θ , ( − π 2 ⩽ θ ⩽ π 2 ,   0 ⩽ r ⩽ 2 cos θ ) \begin{cases}x=r\text{cos}\theta\\ y=r\text{sin}\theta\end{cases},(-\frac{\pi}{2}\leqslant\theta\leqslant\frac{\pi}{2},\,0\leqslant r\leqslant2\text{cos}\theta) {x=rcosθy=rsinθ(2πθ2π,0r2cosθ)

       采用法2的变化方式:
{ x − 1 = r cos θ y = r sin θ , ( 0 ⩽ θ ⩽ 2 π ,   0 ⩽ r ⩽ 1 ) \begin{cases}x-1=r\text{cos}\theta\\ y=r\text{sin}\theta\end{cases},(0\leqslant\theta\leqslant 2\pi,\,0\leqslant r\leqslant1) {x1=rcosθy=rsinθ(0θ2π,0r1)

       两种变换方法各有优劣.
       法1确定   r   \,r\, r范围稍微复杂,但被积表达式可能很简单 (尤其是含   x 2 + y 2 \,x^2+y^2 x2+y2).
       法2确定   r   \,r\, r范围容易,但可能会让被积表达式变得很复杂.
  二重积分
d σ = d x d y = r d r d θ \text{d}\sigma=\text{d}x\text{d}y={\color{Blue}{\color{Red}r}\text{d}r\text{d}\theta} dσ=dxdy=rdrdθ

∬ D f ( x , y ) d σ = ∫ α β d θ ∫ r 1 ( θ ) r 2 ( θ ) f ( r cos θ , r sin θ ) r d r \iint\limits_Df(x,y)\text{d}\sigma=\int^{\beta}_{\alpha}\text{d}\theta\int^{r_2(\theta)}_{r_1(\theta)}f(r\text{cos}\theta,r\text{sin}\theta){\color{Red}r}\text{d}r Df(x,y)dσ=αβdθr1(θ)r2(θ)f(rcosθ,rsinθ)rdr

4 其他重要技巧

(1) 关于计算

  (1) 计算二重积分过程中,要及时将变量分配到对应的定积分内部以简化计算:
∫ − π 2 π 2 d θ ∫ 0 2 cos θ r 3 cos θ d r = ∫ − π 2 π 2 cos θ d θ ∫ 0 2 cos θ r 3 d r \int^{\frac{\pi}{2}}_{-\frac{\pi}{2}}\text{d}\theta\int^{2\text{cos}\theta}_0r^3\text{cos}\theta\text{d}r=\int^{\frac{\pi}{2}}_{-\frac{\pi}{2}}\text{cos}\theta\text{d}\theta\int^{2\text{cos}\theta}_0r^3\text{d}r 2π2πdθ02cosθr3cosθdr=2π2πcosθdθ02cosθr3dr

  (2) 若两个单次积分内部只含积分变量对应的变量 (包括积分限),可以直接相乘计算:
∫ 0 2 π d θ ∫ 0 2 r 3 d r = ∫ 0 2 π d θ × ∫ 0 2 r 3 d r \int^{2\pi}_0\text{d}\theta\int^2_0r^3\text{d}r=\int^{2\pi}_0\text{d}\theta\times\int^2_0r^3\text{d}r 02πdθ02r3dr=02πdθ×02r3dr

  (3) 直角坐标转换为极坐标的特征非常明显,但有时候也需要将极坐标转换为直角坐标来简化计算. 具体选用哪种坐标,主要还是看积分区域的特点. 如果积分区域比较规整(比如直边围成的),就应该考虑使用直角坐标.

(2) 积不出来的定积分总结

  下面这些定积分不能直接求解 (对应不定积分的原函数不是初等函数),但在计算二重积分时,有的可以通过改变积分次序求解. 所以需要留一些印象:

∫ a b x 2 n e ± a x 2 d x      ( a ≠ 0 , n = 0 , 1 , 2 , . . . ) \int^b_ax^{\color{Red}2n}e^{\pm ax^2}\text{d}x\;\;(a\neq 0,n=0,1,2,...) abx2ne±ax2dx(a=0,n=0,1,2,...) ∫ a b e k x d x \int^b_ae^{\frac{k}{x}}\text{d}x abexkdx ∫ a b e a x x d x      ( a ≠ 0 ) \int^b_a\frac{e^{ax}}x\text{d}x\;\;(a\neq 0) abxeaxdx(a=0) ∫ a b sin k x d x , ∫ a b cos k x d x \int^b_a\text{sin}{\frac{k}{x}}\text{d}x,\int^b_a\text{cos}{\frac{k}{x}}\text{d}x absinxkdxabcosxkdx ∫ a b sin x x d x , ∫ a b cos x x d x , ∫ a b tan x x d x \int^b_a\frac{\text{sin}x}{x}\text{d}x,\int^b_a\frac{\text{cos}x}{x}\text{d}x,\int^b_a\frac{\text{tan}x}{x}\text{d}x abxsinxdxabxcosxdxabxtanxdx ∫ a b sin x 2 d x , ∫ a b cos x 2 d x , ∫ a b tan x 2 d x \int^b_a\text{sin}x^2\text{d}x,\int^b_a\text{cos}x^2\text{d}x,\int^b_a\text{tan}x^2\text{d}x absinx2dxabcosx2dxabtanx2dx ∫ a b x n ln x d x      ( n ≠ − 1 ) \int^b_a\frac{x^n}{\text{ln}x}\text{d}x\;\;(n\neq-1) ablnxxndx(n=1) ∫ a b ln x x + a d x      ( a ≠ 0 ) \int^b_a\frac{\text{ln}x}{x+a}\text{d}x\;\;(a\neq0) abx+alnxdx(a=0) ∫ a b 1 x 4 + a d x      ( a ≠ 0 ) \int^b_a\frac{1}{\sqrt{x^4+a}}\text{d}x\;\;(a\neq 0) abx4+a 1dx(a=0) ∫ a b x 1 + x 3 d x \int^b_a\frac{x}{\sqrt{1+x^{3}}}\text{d}x ab1+x3 xdx

5 几何应用

(1) 面积 (平面薄片)

  平面薄片   D   \,D\, D的面积为: A = ∬ D d σ A=\iint\limits_D\text{d}\sigma A=Ddσ

(2) 体积 (曲顶柱体)

  以区域   D   \,D\, D为底,曲面   Σ : z = f ( x , y ) ⩾ 0   \,\Sigma:z=f(x,y)\geqslant 0\, Σ:z=f(x,y)0为顶的曲顶柱体的体积为:
V = ∬ D f ( x , y ) d σ V=\iint\limits_Df(x,y)\text{d}\sigma V=Df(x,y)dσ

(3) 形心坐标 (平面薄片)

  形心:几何形体的中心.

如:矩形两条对称轴的交点、圆形的圆心、三角形三条中线的交点.

  平面薄片   D   \,D\, D的形心坐标   ( x ˉ , y ˉ )   \,\color{Purple}(\bar{x},\bar{y})\, (xˉ,yˉ)计算公式 x ˉ = ∬ D x d σ ∬ D d σ = 1 A ⋅ ∬ D x d σ \bar{x}=\frac{\iint\limits_D{\color{Blue}x}\text{d}\sigma}{\iint\limits_D\text{d}\sigma}=\frac{1}{A}\cdot\iint\limits_D{\color{Blue}x}\text{d}\sigma xˉ=DdσDxdσ=A1Dxdσ y ˉ = ∬ D y d σ ∬ D d σ = 1 A ⋅ ∬ D y d σ \bar{y}=\frac{\iint\limits_D{\color{Blue}y}\text{d}\sigma}{\iint\limits_D\text{d}\sigma}=\frac{1}{A}\cdot\iint\limits_D{\color{Blue}y}\text{d}\sigma yˉ=DdσDydσ=A1Dydσ

  其中: A   A\, A为薄片的面积.

  形心公式逆用
∬ D x d σ = x ˉ ⋅ ∬ D d σ = x ˉ ⋅ A \iint\limits_D{\color{Blue}x}\text{d}\sigma=\bar{x}\cdot \iint\limits_D\text{d}\sigma=\bar{x}\cdot A Dxdσ=xˉDdσ=xˉA ∬ D y d σ = y ˉ ⋅ ∬ D d σ = y ˉ ⋅ A \iint\limits_D{\color{Blue}y}\text{d}\sigma=\bar{y}\cdot \iint\limits_D\text{d}\sigma=\bar{y}\cdot A Dydσ=yˉDdσ=yˉA ∬ D z d σ = z ˉ ⋅ ∬ D d σ = z ˉ ⋅ A \iint\limits_D{\color{Blue}z}\text{d}\sigma=\bar{z}\cdot \iint\limits_D\text{d}\sigma=\bar{z}\cdot A Dzdσ=zˉDdσ=zˉA

  在计算二重积分时,遇到   ∬ D x d σ \,\iint\limits_D{\color{Blue}x}\text{d}\sigma Dxdσ ∬ D y d σ \iint\limits_D{\color{Blue}y}\text{d}\sigma Dydσ ∬ D z d σ \iint\limits_D{\color{Blue}z}\text{d}\sigma Dzdσ,并且图形规则(可以直接看出形心)、面积易于确定时,应立即想到形心公式的逆用. 通过逆用形心公式,可以简化计算.

6 物理应用

(1) 质量 (平面薄片)

  若   ρ ( x , y )   \,\rho(x,y)\, ρ(x,y)为平面薄片   D   \,D\, D的面密度,则薄片质量为:
m = ∬ D ρ ( x , y ) d σ m=\iint\limits_D\rho(x,y)\text{d}\sigma m=Dρ(x,y)dσ

(2) 质心/重心坐标公式 (平面薄片)

  质心:质量的中心.

  质心坐标   ( x ˉ , y ˉ )   \,(\bar{x},\bar{y})\, (xˉ,yˉ)的计算公式

  平面薄片   D   \,D\, D的质心坐标   ( x ˉ , y ˉ )   \,\color{Purple}(\bar{x},\bar{y})\, (xˉ,yˉ)计算公式

    设平面薄片   D   \,D\, D的面密度为   ρ ( x , y ) \,\color{Purple}\rho(x,y) ρ(x,y),则平面的质心坐标为: x ˉ = ∬ D x ⋅ ρ ( x , y ) d σ ∬ D ρ ( x , y ) d σ \bar{x}=\frac{\iint\limits_D{\color{Blue}x}\cdot{\color{Purple}\rho(x,y)}\text{d}\sigma}{\iint\limits_D{\color{Purple}\rho(x,y)}\text{d}\sigma} xˉ=Dρ(x,y)dσDxρ(x,y)dσ y ˉ = ∬ D y ⋅ ρ ( x , y ) d σ ∬ D ρ ( x , y ) d σ \bar{y}=\frac{\iint\limits_D{\color{Blue}y\cdot{\color{Purple}\rho(x,y)}}\text{d}\sigma}{\iint\limits_D{\color{Purple}\rho(x,y)}\text{d}\sigma} yˉ=Dρ(x,y)dσDyρ(x,y)dσ

  注意
    (1) 从形式上看,质心公式只是在形心公式分子分母的二重积分内部多乘了一个   ρ ( x , y ) \,\color{Purple}\rho(x,y) ρ(x,y).
    (2) 当薄片密度分布均匀(即   ρ ( x , y )   \,\rho(x,y)\, ρ(x,y)为常数)时,质心与形心重合.
    (3) 重心:重心是重力平衡的重心,质心重心是永远是重合的.

  重心公式
x ˉ = ∬ D x ⋅ ρ ( x , y ) ⋅ g d σ ∬ D ρ ( x , y ) ⋅ g d σ \bar{x}=\frac{\iint\limits_D{\color{Blue}x}\cdot{\color{Purple}\rho(x,y)}\cdot {\color{Red}g}\text{d}\sigma}{\iint\limits_D{\color{Purple}\rho(x,y)}\cdot{\color{Red}g}\text{d}\sigma} xˉ=Dρ(x,y)gdσDxρ(x,y)gdσ

y ˉ = ∬ D y ⋅ ρ ( x , y ) ⋅ g d σ ∬ D ρ ( x , y ) ⋅ g d σ \bar{y}=\frac{\iint\limits_D{\color{Blue}y\cdot{\color{Purple}\rho(x,y)}}\cdot{\color{Red}g}\text{d}\sigma}{\iint\limits_D{\color{Purple}\rho(x,y)}\cdot{\color{Red}g}\text{d}\sigma} yˉ=Dρ(x,y)gdσDyρ(x,y)gdσ

  其中   g   \,{\color{Red}g}\, g为引力常数,也正因如此,分子分母的   g   \,{\color{Red}g}\, g可以约掉,于是就和质心公式一样了.

(3) 转动惯量 (平面薄片)

  若   ρ ( x , y )   \,\rho(x,y)\, ρ(x,y)为平面薄片   D   \,D\, D的面密度,则其转动惯量计算公式为:

     D   \,D\, D   x   \,x\, x的转动惯量为
I x = ∬ D y 2 ⋅ ρ ( x , y ) d x d y {\color{Green}I_x}=\iint\limits_D{\color{Blue}y^2}\cdot{\color{Purple}\rho(x,y)}\text{d}x\text{d}y Ix=Dy2ρ(x,y)dxdy

     D   \,D\, D   y   \,y\, y的转动惯量为
I y = ∬ D x 2 ⋅ ρ ( x , y ) d x d y {\color{Green}I_y}=\iint\limits_D{\color{Blue}x^2}\cdot{\color{Purple}\rho(x,y)}\text{d}x\text{d}y Iy=Dx2ρ(x,y)dxdy

     D   \,D\, D原点的转动惯量为
I O = ∬ D ( x 2 + y 2 ) ⋅ ρ ( x , y ) d x d y {\color{Green}I_O}=\iint\limits_D{\color{Blue}(x^2+y^2)}\cdot{\color{Purple}\rho(x,y)}\text{d}x\text{d}y IO=D(x2+y2)ρ(x,y)dxdy

  一般情况
    设   M ( x , y )   \,M(x,y)\, M(x,y)   D   \,D\, D上的一点, l   l\, l为一条直线,   M   \,M\, M到直线   l   \,l\, l的距离为   d \,d d,则   D   \,D\, D   l   \,l\, l的转动惯量为:
I l = ∬ D d 2 ⋅ ρ ( x , y ) d x d y {\color{Green}I_l}=\iint\limits_D{\color{Blue}d^2}\cdot{\color{Purple}\rho(x,y)}\text{d}x\text{d}y Il=Dd2ρ(x,y)dxdy

(4) 引力 (平面薄片)

  若平面薄片   D   \,D\, D的面密度为   ρ ( x , y ) \,\rho(x,y) ρ(x,y),则薄片对点   M ( x 0 , y 0 , z 0 )   \,M(x_0,y_0,z_0)\, M(x0,y0,z0)处质量为   m   \,m\, m的质点引力   ( F x , F y , F z )   \,\color{Purple}(F_x,F_y,F_z)\, (Fx,Fy,Fz)的计算公式为:

F x = G m ∬ D ρ ( x , y ) ( x − x 0 ) [ ( x − x 0 ) 2 + ( y − y 0 ) 2 + z 0 2 ] 3 2 d σ {\color{Green}F_x}=Gm\iint\limits_D\frac{{\color{Purple}\rho(x,y)}{\color{Blue}(x-x_0)}}{[(x-x_0)^2+(y-y_0)^2+z_0^2]^{\frac{3}{2}}}\text{d}\sigma Fx=GmD[(xx0)2+(yy0)2+z02]23ρ(x,y)(xx0)dσ F y = G m ∬ D ρ ( x , y ) ( y − y 0 ) [ ( x − x 0 ) 2 + ( y − y 0 ) 2 + z 0 2 ] 3 2 d σ {\color{Green}F_y}=Gm\iint\limits_D\frac{{\color{Purple}\rho(x,y)}{\color{Blue}(y-y_0)}}{[(x-x_0)^2+(y-y_0)^2+z_0^2]^{\frac{3}{2}}}\text{d}\sigma Fy=GmD[(xx0)2+(yy0)2+z02]23ρ(x,y)(yy0)dσ F z = − z 0 ⋅ G m ∬ D ρ ( x , y ) [ ( x − x 0 ) 2 + ( y − y 0 ) 2 + z 0 2 ] 3 2 d σ {\color{Green}F_z}={\color{Blue}-z_0}\cdot Gm\iint\limits_D\frac{{\color{Purple}\rho(x,y)}}{[(x-x_0)^2+(y-y_0)^2+z_0^2]^{\frac{3}{2}}}\text{d}\sigma Fz=z0GmD[(xx0)2+(yy0)2+z02]23ρ(x,y)dσ

   G   G\, G为引力常量.

题型

1 基本概念

(一) 比较二重积分大小

  思路
    积分区域相同,比较二重积分的大小转化为比较被积函数的大小.
    是对二重积分性质中不等关系的应用. 经常会结合几个重要的不等式出题.
    对于不太好比较的关系 (比如: ∬ D sin 3 ( x + y ) d σ   \iint\limits_{D}\text{sin}^3(x+y)\text{d}\sigma\, Dsin3(x+y)dσ   ∬ D ln 3 ( x + y ) d σ \,\iint\limits_{D}\text{ln}^3(x+y)\text{d}\sigma Dln3(x+y)dσ),可以考虑麦克劳林公式.

(二) 求极限

  有以下三种类型:

    (1) 积分中值定理

      特征:极限包含二重积分,且二重积分内为二元函数.
      思路:确定积分区域面积、使用积分中值定理,再求极限.

  例. D : x 2 + 4 y 2 ⩽ t 2 D: x^2+4y^2\leqslant t^2 D:x2+4y2t2,求极限   lim ⁡ t → 0 1 t − ln ( 1 + t ) ∬ D e − x 2 cos y d σ \,\lim\limits_{t\to 0}\frac{1}{t-\text{ln}(1+t)}\iint\limits_{D}e^{-x^2}\text{cos}y\text{d}\sigma t0limtln(1+t)1Dex2cosydσ.
  解:存在   ( ξ , η ) ∈ D \,(\xi,\eta)\in D (ξ,η)D,使得
∬ D e − x 2 cos y d σ = e − ξ 2 cos η ⋅ ( π ⋅ t ⋅ t 2 ) = π t 2 2 e − ξ 2 cos η \iint\limits_{D}e^{-x^2}\text{cos}y\text{d}\sigma=e^{-\xi^2}\text{cos}\eta\cdot (\pi\cdot t\cdot\frac{t}{2})=\frac{\pi t^2}{2} e^{-\xi^2}\text{cos}\eta Dex2cosydσ=eξ2cosη(πt2t)=2πt2eξ2cosη

    因此,
lim ⁡ t → 0 ∬ D e − x 2 cos y d σ t − ln ( 1 + t ) = lim ⁡ t → 0 π t 2 2 e − ξ 2 cos η 1 2 t 2 = π lim ⁡ t → 0 e − ξ 2 cos η = π \lim\limits_{t\to 0}\frac{\iint\limits_{D}e^{-x^2}\text{cos}y\text{d}\sigma}{t-\text{ln}(1+t)}=\lim\limits_{t\to 0}\frac{\frac{\pi t^2}{2} e^{-\xi^2}\text{cos}\eta}{\frac{1}{2}t^2}=\pi\lim\limits_{t\to 0}e^{-\xi^2}\text{cos}\eta=\pi t0limtln(1+t)Dex2cosydσ=t0lim21t22πt2eξ2cosη=πt0limeξ2cosη=π

    说明:
      (1) 椭圆面积公式: S = π ⋅ a ⋅ b S=\pi\cdot a\cdot b S=πab
      (2) x 2 + 4 y 2 ⩽ t 2 x^2+4y^2\leqslant t^2 x2+4y2t2,说明   t → 0   \,t\to0\, t0时, ( ξ , η ) → ( 0 , 0 ) (\xi,\eta)\to(0,0) (ξ,η)(0,0).

    (2)   n   \,n\, n项和极限

      思路:先转换   ∑ ∑   \,\sum\sum\, 为二重积分,再求极限.

  例. 求   lim ⁡ m → ∞ n → ∞ ∑ i = 1 m ∑ j = 1 n n ( m + i ) ( n 2 + j 2 ) \,\lim\limits_{m\to\infty \atop n\to\infty}\sum\limits_{i=1}^{m}\sum\limits_{j=1}^{n}\frac{n}{(m+i)(n^2+j^2)} nmlimi=1mj=1n(m+i)(n2+j2)n.

  解:
lim ⁡ m → ∞ n → ∞ ∑ i = 1 m ∑ j = 1 n n ( m + i ) ( n 2 + j 2 ) \lim\limits_{m\to\infty \atop n\to\infty}\sum\limits_{i=1}^{m}\sum\limits_{j=1}^{n}\frac{n}{(m+i)(n^2+j^2)} nmlimi=1mj=1n(m+i)(n2+j2)n = lim ⁡ m → ∞ n → ∞ 1 m n ∑ i = 1 m ∑ j = 1 n 1 ( 1 + i m ) [ 1 + ( j n ) 2 ] =\lim\limits_{m\to\infty \atop n\to\infty}\frac{1}{mn}\sum\limits_{i=1}^{m}\sum\limits_{j=1}^{n}\frac{1}{(1+\frac{i}{m})[1+(\frac{j}{n})^2]} =nmlimmn1i=1mj=1n(1+mi)[1+(nj)2]1 = ∫ 0 1 d x 1 + x ∫ 0 1 d y 1 + y 2 =\int_0^1\frac{\text{d}x}{1+x}\int^1_0\frac{\text{d}y}{1+y^2} =011+xdx011+y2dy = ln 2 ⋅ π 4 =\text{ln}2\cdot\frac{\pi}{4} =ln24π

    (3) 直接求
      特征:极限包含二重积分,且二重积分内为一元函数.

  例:
     D : x 2 + y 2 ⩽ t 2 D:x^2+y^2\leqslant t^2 D:x2+y2t2 f ( 0 ) = 0 f(0)=0 f(0)=0 f ′ ( 0 ) = 2 f'(0)=2 f(0)=2,求:
lim ⁡ t → 0 ∬ D f ( x 2 + y 2 ) d σ 1 − e − t 3 . \lim\limits_{t\to 0}\frac{\iint\limits_{D}f(\sqrt{x^2+y^2})\text{d}\sigma}{1-e^{-t^3}}. t0lim1et3Df(x2+y2 )dσ.

  解:
I = lim ⁡ t → 0 ∫ 0 2 π d θ ∫ 0 t r f ( r ) d r t 3 = 2 π 3 lim ⁡ t → 0 f ( t ) t = 4 π 3 I=\lim\limits_{t\to 0}\frac{\int^{2\pi}_0\text{d}\theta\int^t_0rf(r)\text{d}r}{t^3}=\frac{2\pi}{3}\lim\limits_{t\to 0}\frac{f(t)}{t}=\frac{4\pi}{3} I=t0limt302πdθ0trf(r)dr=32πt0limtf(t)=34π

(三) 求导

  求二重积分的导数. 从   F ( n ) ( x )   \,F^{(n)}(x)\, F(n)(x)开始,先简化二重积分 (拆分成累次积分),往下求导即可.
  注意
    题目没给   f ( x )   \,f(x)\, f(x)的导数条件就不能用   f ′ ( x )   \,f'(x)\, f(x),而应该用   lim ⁡ x → a f ( x ) − f ( a ) x − a \,\lim\limits_{x\to a}\frac{f(x)-f(a)}{x-a} xalimxaf(x)f(a).

2 二重积分基本计算

  标准步骤
     1 o    1^o\; 1o绘制积分区域;
     2 o    2^o\; 2o确定对称性,尝试使用对称奇偶性简化被积表达式;
     3 o    3^o\; 3o判断是否存在挖空(比如大圆内部去掉小圆)的情况,对二重积分进行拆分;
     4 o    4^o\; 4o确定积分法 (直接使用题目积分法或变换积分法);
      (1) 若采用直角坐标
        先确定积分次序,根据积分次序确定区域范围:
D = { ( x , y )   ∣   . . . ⩽ x ⩽ . . . , . . . ⩽ y ⩽ . . . } D=\{(x,y)\,|\,...\leqslant x\leqslant...,...\leqslant y\leqslant...\} D={(x,y)...x...,...y...}

  当然,如果是多个区域,则写出   D 1 = { ( x , y )   ∣   . . . } \,D_1=\{(x,y)\,|\,...\} D1={(x,y)...} D 2 = { ( x , y )   ∣   . . . } D_2=\{(x,y)\,|\,...\} D2={(x,y)...},…

        若曲线是以参数方程形式给出,
        在确定范围前先设   L   \,L\, L的直角坐标形式为   L : y = f ( x )    ( x ∈ [ a , b ] ) \,L:y=f(x)\;(x\in[a,b]) L:y=f(x)(x[a,b])
        然后在写出累次积分时直接使用   y   \,y\, y   f ( x )   \,f(x)\, f(x)作为积分限或被积函数.
      (2) 若采用极坐标
        令 { x = r cos θ y = r sin θ \begin{cases}x=r\text{cos}\theta\\y=r\text{sin}\theta\end{cases} {x=rcosθy=rsinθ,然后确定   θ \,\theta θ   r   \,r\, r范围:
D = { ( r , θ )   ∣   α ⩽ θ ⩽ β , r 1 ( θ ) ⩽ r ⩽ r 2 ( θ ) } D=\{(r,\theta)\,|\,\alpha\leqslant\theta\leqslant\beta,r_1(\theta)\leqslant r\leqslant r_2(\theta)\} D={(r,θ)αθβ,r1(θ)rr2(θ)}

  当然,如果是多个区域,则写出   D 1 = { ( r , θ )   ∣   . . . } \,D_1=\{(r,\theta)\,|\,...\} D1={(r,θ)...} D 2 = { ( r , θ )   ∣   . . . } D_2=\{(r,\theta)\,|\,...\} D2={(r,θ)...}、…

     5 o    5^o\; 5o写出对应积分法的累次积分,进行计算. 需要注意的是:
      在直角坐标法中,若曲线以参数方程形式给出,
      这时就可以将积分进一步化为关于   t   \,t\, t的积分再求解.

  注意
    (1) 若发现内层的单积分积不出来,需要改变积分次序.
    (2) 关于参数方程:直角坐标有时候需要使用参数方程求解,尤其是遇到定积分应用部分需要重点掌握的几个特殊曲线的参数形式. 这时就应该使用参数方程求解,将   x \,x x y   y\, y的范围转换为   t   \,t\, t的范围.

3 二重积分内部含偏导数的计算

  思路
    定积分中有相同的题型,使用分部积分法进行求解.

    如: ∬ D x y f x y ′ ′ ( x , y ) d σ , D = { ( x , y )   ∣   0 ⩽ x ⩽ 1 , 0 ⩽ y ⩽ 1 } \iint\limits_Dxyf''_{xy}(x,y)\text{d}\sigma,D=\{(x,y)\,|\,0\leqslant x\leqslant 1,0\leqslant y\leqslant1\} Dxyfxy(x,y)dσD={(x,y)0x1,0y1}
∬ D x y f x y ′ ′ ( x , y ) d σ = ∫ 0 1 x d x ∫ 0 1 y d f x ′ ( x , y ) = . . . \iint\limits_Dxyf''_{xy}(x,y)\text{d}\sigma=\int^1_0x\text{d}x\int^1_0y\text{d}f'_x(x,y)=... Dxyfxy(x,y)dσ=01xdx01ydfx(x,y)=...

  注意
    计算过程中,偏导数与积分变量一定要匹配才能把偏导数移到   d   \,\text{d}\, d后,比如:

∫ 0 1 x y f x y ′ ′ ( x , y ) d y = ∫ 0 1 x y d f x ′ ( x , y ) \int^1_0xyf''_{xy}(x,y)\text{d}y=\int^1_0xy\text{d}f'_x(x,y) 01xyfxy(x,y)dy=01xydfx(x,y) ∫ 0 1 x y f x y ′ ′ ( x , y ) d x = × \int^1_0xyf''_{xy}(x,y)\text{d}x=\color{Red}\times 01xyfxy(x,y)dx=×

    如果计算过程中出现二者不匹配的情况,要改变积分次序
∫ 0 1 x d x ∫ 0 1 f x ′ ( x , y ) d y = ∫ 0 1 d y ∫ 0 1 x f x ′ ( x , y ) d x = ∫ 0 1 d y ∫ 0 1 x d f ( x , y ) \int^1_0x\text{d}x\int^1_0f'_{x}(x,y)\text{d}y=\int^1_0\text{d}y\int^1_0xf'_x(x,y)\text{d}x=\int^1_0\text{d}y\int^1_0x\text{d}{f(x,y)} 01xdx01fx(x,y)dy=01dy01xfx(x,y)dx=01dy01xdf(x,y)

4 分段函数的计算

  特征:被积函数是分段函数 (直接给出绝对值、 max \text{max} max min 、 . . . \text{min}、... min...),按照不同的段划分好区域后再求二重积分.
    (2) 先确定被积函数的分段函数,根据分段函数的范围缩小积分区域,再求二重积分.

  注意
    有一类题目,二重积分的被积函数含   f ( x , y )   \,f(x,y)\, f(x,y)   f ( x )   \,f(x)\, f(x) (并且被积函数可能是这些函数的一些复合函数的乘积),并且   f ( x , y ) \,f(x,y) f(x,y) f ( x )   f(x)\, f(x)在一些范围内等于   0 \,0 0 (形如概率论中的密度函数). 比如:

D = { ( x , y )   ∣   − ∞ < x < + ∞ ,   − ∞ < y < + ∞ } D=\{(x,y)\,|\,-\infty<x<+\infty,\,-\infty<y<+\infty\} D={(x,y)<x<+,<y<+} f ( x ) = { x , 0 ⩽ x ⩽ 1 0 , 其 他 f(x)=\begin{cases}x,&0\leqslant x\leqslant1\\0,&其他\end{cases} f(x)={x,0,0x1 ∬ D f ( y ) f ( x + y ) d x d y \iint\limits_{D}f(y)f(x+y)\text{d}x\text{d}y Df(y)f(x+y)dxdy

    这类题目的解题步骤如下:
       1 o    1^o\; 1o根据   f ( x )   \,f(x)\, f(x)特点,确定各个复合函数的表达式 (没有复合函数自然就不需要这一步).
       2 o    2^o\; 2o确定将这些复合函数相乘后的非   0   \,0\, 0部分的范围 (也就是被积函数的积分区域),绘制积分区域.
       3 o    3^o\; 3o计算.

5 改变积分次序问题

  改变积分次序的原因
    1. 题目要求改变积分次序;
    2. 积分次序不正确,导致二重积分无法计算;
    3. 改变积分次序可以简化计算;
    4. 变积分限函数求导经常需要考虑改变积分次序.

  改变方法
    根据二重积分绘制积分区域,再重新确定积分限.
     1 o    1^o\; 1o绘制积分区域;
     2 o    2^o\; 2o重新确定积分次序 (有的题目还会要求转换极坐标和直角坐标).
     3 o    3^o\; 3o(计算).

  注意
    (1) 如果题目变换积分次序为多个二重积分之和 (比如: ∫ 0 1 4 d y ∫ y y f ( x , y ) d x + ∫ 1 4 1 2 d y ∫ y 1 2 f ( x , y ) d x \int^{\frac{1}{4}}_0\text{d}y\int^{\sqrt{y}}_yf(x,y)\text{d}x+\int^{\frac{1}{2}}_{\frac{1}{4}}\text{d}y\int^{\frac{1}{2}}_yf(x,y)\text{d}x 041dyyy f(x,y)dx+4121dyy21f(x,y)dx),
      在绘制积分区域时画到一张图里考虑,因为如果积分区域是相连的,就可以免除后面的合并工作.
    (2) 关于变积分限求导问题:
      考虑这个题目: φ ( t ) = ∫ 1 t d y ∫ y t f ( x ) d x \varphi(t)=\int^t_1\text{d}y\int^t_yf(x)\text{d}x φ(t)=1tdyytf(x)dx,求   φ ( t ) \,\varphi(t) φ(t).
        实际上,   φ ( t ) = ∫ 1 t d y ∫ y t f ( x ) d x = ∫ 1 t [ ∫ y t f ( x ) d x ] d y \,\varphi(t)=\int^t_1\text{d}y\int^t_yf(x)\text{d}x=\int^t_1[\int^t_yf(x)\text{d}x]\text{d}y φ(t)=1tdyytf(x)dx=1t[ytf(x)dx]dy.
        其中   ∫ y t f ( x ) d x   \,\int^t_yf(x)\text{d}x\, ytf(x)dx积出来以后是一个既含   t   \,t\, t又含   y   \,y\, y的表达式.
        但我们希望的是内层积分积出来以后仅为含   y   \,y\, y的表达式,这样才方便求导数,所以要考虑改变积分次序.

  极坐标改变积分次序

    极坐标下变换积分次序刚开始可能比较难理解,所以单独强调一下:

    以变换下面这个二重积分为例 (2022-李永乐660-109题):
∫ − π 4 π 2 d θ ∫ 0 2 cos θ f ( r cos θ , r sin θ ) r d r \int^{\frac{\pi}{2}}_{-\frac{\pi}{4}}\text{d}\theta \int^{2\text{cos}\theta}_0f(r\text{cos}\theta,r\text{sin}\theta)r\text{d}r 4π2πdθ02cosθf(rcosθ,rsinθ)rdr

    绘制积分区域为:

    首先回顾不变换时,根据积分区域写出二重积分的方法:
      先确定   θ   \,\theta\, θ的范围(外层累次积分的上下限),再通过固定   θ \,\theta θ,确定   r   \,r\, r的范围(内层累次积分的上下限).

      强调这个过程的两个事实:
        (1) 因为   r   \,r\, r   θ   \,\theta\, θ确定,所以   r   \,r\, r范围的上下限都是关于   θ   \,\theta\, θ的式子.
        (2) 通过确定   r   \,r\, r的范围可以看出,不需要对积分区域进行划分再计算.

  如何确定积分区域是否需要划分:确定   r   \,r\, r范围,我们通常是在积分区域里任意画一条贯穿区域的射线确定. 通过这条射线就能看出任取一个   θ   \,\theta\, θ后,对应   r   \,r\, r的取值范围. 需要注意的是,如果这条射线在穿区域时,   r   \,r\, r的取值范围出现不同,那么就要划分区域分别计算. 自然地,这种情况下写出的二重积分应当是不同区域二重积分相加的结果.

    那么类比这个思路,交换积分次序以后,无非是:
      先确定   r   \,r\, r的范围(外层累次积分的上下限),再确定   θ   \,\theta\, θ的范围(内层累次积分的上下限).

      所以最后二重积分应该下面这种形式:
∫ ? ? r d r ∫ ? ? f ( r cos θ , r sin θ ) d θ \int_?^? r\text{d}r\int^?_? f(r\text{cos}\theta,r\text{sin}\theta) \text{d}\theta ??rdr??f(rcosθ,rsinθ)dθ

      要通过   r   \,r\, r确定   θ   \,\theta\, θ的范围,我们通过任意取一个大小为   r   \,r\, r的线段,固定起点让其划过积分区域(从最小的角度开始,划过整个积分区域),这个过程会形成一段圆弧,观察圆弧与积分区域的起始交点和最后交点,即可确定   θ   \,\theta\, θ的变化.
      下图中就有   r   \,r\, r   2   \,\sqrt{2}\, 2 时形成的圆弧.

      值得注意的是,当   0 ⩽ r ⩽ 2   \,0\leqslant r\leqslant\sqrt{2}\, 0r2 时,线段划过区域的起始交点和最后交点对应   θ   \,\theta\, θ都有相同的表达式 (由几何关系可以确定:   − π 4 ⩽ θ ⩽ arccos r 2 \,-\frac{\pi}{4}\leqslant \theta \leqslant \text{arccos}\frac{r}{2} 4πθarccos2r).
      但当   2 ⩽ r ⩽ 2   \,\sqrt{2}\leqslant r\leqslant 2\, 2 r2时,线段划过区域的起始交点和最后交点对应   θ   \,\theta\, θ不同于之前的表达式 (由几何关系可以确定:   − arccos r 2 ⩽ θ ⩽ arccos r 2 \,-\text{arccos}\frac{r}{2}\leqslant \theta \leqslant \text{arccos}\frac{r}{2} arccos2rθarccos2r),所以我们需要对积分区域进行划分再计算.

  一定要通过画图,才方便观察出这种差异. 通过画不同半径的弧线穿过区域,发现   0 ⩽ r ⩽ 2   \,0\leqslant r\leqslant\sqrt{2}\, 0r2 时的弧线段起始交点对应角度都没有变化(都是   − π 4   \,-\frac{\pi}{4}\, 4π),最后交点在不断变化. 而   2 ⩽ r ⩽ 2   \,\sqrt{2}\leqslant r\leqslant 2\, 2 r2时,弧线段的起始交点和最后交点对应角度都会发生变化. 于是察觉到需要划分区域.

      通过上面的分析,即可写出最终变换积分次序后的积分:

∫ 0 2 r d r ∫ − π 4 arccos r 2 f ( r cos θ , r sin θ ) d θ + ∫ 2 2 r d r ∫ − arccos r 2 arccos r 2 f ( r cos θ , r sin θ ) d θ \int_0^{\sqrt{2}} r\text{d}r\int^{\text{arccos}\frac{r}{2}}_{-\frac{\pi}{4}} f(r\text{cos}\theta,r\text{sin}\theta) \text{d}\theta+\int_{\sqrt{2}}^{2} r\text{d}r\int^{\text{arccos}\frac{r}{2}}_{-\text{arccos}\frac{r}{2}} f(r\text{cos}\theta,r\text{sin}\theta) \text{d}\theta 02 rdr4πarccos2rf(rcosθ,rsinθ)dθ+2 2rdrarccos2rarccos2rf(rcosθ,rsinθ)dθ

      最后,强调以上计算过程中的两个事实:
        (1) 因为   θ   \,\theta\, θ   r   \,r\, r确定,所以   θ   \,\theta\, θ范围的上下限都是关于   r   \,r\, r的式子.
        (2) 通过确定   θ   \,\theta\, θ的范围可以看出,需要对积分区域进行划分再计算.

6 由   f ( x , y )   \,f(x,y)\, f(x,y)含自身定积分的表达式,求   f ( x , y ) \,f(x,y) f(x,y) (设   A \,A A)

  思路
    定积分中有相同的题型. 设   A =   \,A=\, A=式中出现的二重积分. 同样,如果出现多个不同的二重积分,则分别设不同的字母求解.

Part 2 三重积分

记忆内容

1 三重积分的定义

∭ Ω f ( x , y , z ) d v = lim ⁡ λ → 0 ∑ i = 1 n f ( ξ i , η i , ζ i ) Δ v i \iiint\limits_\Omega f(x,y,z)\text{d}v=\lim\limits_{\lambda\to0}\sum\limits^n_{i=1}f(\xi_i,\eta_i,\zeta_i)\Delta v_i Ωf(x,y,z)dv=λ0limi=1nf(ξi,ηi,ζi)Δvi

  注意:
    (1) λ → 0 ⇒ n → ∞ \lambda\to0\Rightarrow n\to\infty λ0n,反之不对.
    (2) d v = d x d y d z \text{d}v=\text{d}x\text{d}y\text{d}z dv=dxdydz.
    (3) lim ⁡ λ → 0 ∑ i = 1 n f ( ξ i , η i , ζ i ) Δ v i   \lim\limits_{\lambda\to 0} \sum\limits^{n}_{i=1} f(\xi_i,\eta_i,\zeta_i)\Delta v_i\, λ0limi=1nf(ξi,ηi,ζi)Δvi   Ω   \,\Omega\, Ω的分法、 ( ξ i , η i , ζ i )   (\xi_i,\eta_i,\zeta_i)\, (ξi,ηi,ζi)的取法都无关.

2 三重积分的性质

(一) 基本性质

∭ Ω [ k 1 f ( x , y , z ) + k 2 g ( x , y , z ) ] d v = k 1 ∭ Ω f ( x , y , z ) d v + k 2 ∭ Ω g ( x , y , z ) d v \iiint\limits_\Omega\big[k_1f(x,y,z)+k_2g(x,y,z)\big]\text{d}v=k_1\iiint\limits_\Omega f(x,y,z)\text{d}v+k_2\iiint\limits_\Omega g(x,y,z)\text{d}v Ω[k1f(x,y,z)+k2g(x,y,z)]dv=k1Ωf(x,y,z)dv+k2Ωg(x,y,z)dv ∭ Ω f ( x , y , z ) d v = ∭ Ω 1 f ( x , y , z ) d v + ∭ Ω 2 f ( x , y , z ) d v      ( Ω 1 ∪ Ω 2 = Ω , Ω 1 ∩ Ω 2 = 0 ) \iiint\limits_{\Omega}f(x,y,z) \text{d}v=\iiint\limits_{\Omega_1}f(x,y,z) \text{d}v+\iiint\limits_{\Omega_2}f(x,y,z) \text{d}v\;\;(\Omega_1\cup\Omega_2=\Omega,\Omega_1\cap\Omega_2=0) Ωf(x,y,z)dv=Ω1f(x,y,z)dv+Ω2f(x,y,z)dv(Ω1Ω2=ΩΩ1Ω2=0) ∭ Ω d v = V      ( V 为 区 域   Ω   的 体 积 ) \iiint\limits_\Omega\text{d}v=V\;\;(V为区域\,\Omega\,的体积) Ωdv=V(VΩ) ∣ ∭ Ω f ( x , y , z ) d v ∣ ⩽ ∭ Ω ∣ f ( x , y , z ) ∣ d v \bigg|\iiint\limits_\Omega f(x,y,z)\text{d}v\bigg|\leqslant\iiint\limits_\Omega\big| f(x,y,z)\big|\text{d}v Ωf(x,y,z)dvΩf(x,y,z)dv

(二) 积分中值定理

  设   f ( x , y , z )   \,f(x,y,z)\, f(x,y,z)在有限闭区域   Ω   \,\Omega\, Ω上连续, V   V\, V   Ω   \,\Omega\, Ω的体积,则存在   ( ξ , η , ζ ) ∈ Ω \,(\xi,\eta,\zeta)\in\Omega (ξ,η,ζ)Ω,使得 ∭ Ω f ( x , y , z ) d v = f ( ξ , η , ζ ) ⋅ V \iiint\limits_\Omega f(x,y,z)\text{d}v=f(\xi,\eta,\zeta)\cdot V Ωf(x,y,z)dv=f(ξ,η,ζ)V

(三) 对称奇偶性

  (1) 设   Ω   \,\Omega\, Ω关于   x O y   \,xOy\, xOy平面对称 (即关于变量   z   \,z\, z对称),且   Ω 1   \,\Omega_1\, Ω1   Ω   \,\Omega\, Ω位于   x O y   \,xOy\, xOy平面上方的部分,则 ∭ Ω f ( x , y , z ) d v = { 0 , f ( x , y , z ) = − f ( x , y , − z ) 2 ∭ Ω 1 f ( x , y , z ) d v , f ( x , y , z ) = f ( x , y , − z ) \iiint\limits_\Omega f(x,y,z)\text{d}v=\begin{cases} 0,&f(x,y,z)=-f(x,y,-z)\\ 2\iiint\limits_{\Omega_1} f(x,y,z)\text{d}v,&f(x,y,z)=f(x,y,-z)\end{cases} Ωf(x,y,z)dv=02Ω1f(x,y,z)dvf(x,y,z)=f(x,y,z)f(x,y,z)=f(x,y,z)

  (2) 设   Ω   \,\Omega\, Ω关于   y O z   \,yOz\, yOz平面对称 (即关于变量   x   \,x\, x对称),且   Ω 1   \,\Omega_1\, Ω1   Ω   \,\Omega\, Ω位于   y O z   \,yOz\, yOz平面前侧的部分,则 ∭ Ω f ( x , y , z ) d v = { 0 , f ( x , y , z ) = − f ( − x , y , z ) 2 ∭ Ω 1 f ( x , y , z ) d v , f ( x , y , z ) = f ( − x , y , z ) \iiint\limits_\Omega f(x,y,z)\text{d}v=\begin{cases} 0,&f(x,y,z)=-f(-x,y,z)\\ 2\iiint\limits_{\Omega_1} f(x,y,z)\text{d}v,&f(x,y,z)=f(-x,y,z)\end{cases} Ωf(x,y,z)dv=02Ω1f(x,y,z)dvf(x,y,z)=f(x,y,z)f(x,y,z)=f(x,y,z)

  (3) 设   Ω   \,\Omega\, Ω关于   x O z   \,xOz\, xOz平面对称 (即关于变量   y   \,y\, y对称),且   Ω 1   \,\Omega_1\, Ω1   Ω   \,\Omega\, Ω位于   x O z   \,xOz\, xOz平面右侧的部分,则 ∭ Ω f ( x , y , z ) d v = { 0 , f ( x , y , z ) = − f ( x , − y , z ) 2 ∭ Ω 1 f ( x , y , z ) d v , f ( x , y , z ) = f ( x , − y , z ) \iiint\limits_\Omega f(x,y,z)\text{d}v=\begin{cases} 0,&f(x,y,z)=-f(x,-y,z)\\ 2\iiint\limits_{\Omega_1} f(x,y,z)\text{d}v,&f(x,y,z)=f(x,-y,z)\end{cases} Ωf(x,y,z)dv=02Ω1f(x,y,z)dvf(x,y,z)=f(x,y,z)f(x,y,z)=f(x,y,z)

  (4) 设   Ω   \,\Omega\, Ω关于原点中心对称,且   Ω 1   \,\Omega_1\, Ω1   Ω   \,\Omega\, Ω的上半部分,则 ∭ Ω f ( x , y , z ) d v = { 0 , f ( x , y , z ) = − f ( − x , − y , − z ) 2 ∭ Ω 1 f ( x , y , z ) d v , f ( x , y , z ) = f ( − x , − y , − z ) \iiint\limits_\Omega f(x,y,z)\text{d}v=\begin{cases} 0,&f(x,y,z)=-f(-x,-y,-z)\\ 2\iiint\limits_{\Omega_1} f(x,y,z)\text{d}v,&f(x,y,z)=f(-x,-y,-z)\end{cases} Ωf(x,y,z)dv=02Ω1f(x,y,z)dvf(x,y,z)=f(x,y,z)f(x,y,z)=f(x,y,z)

  (4) 轮换对称性

    若把字母对调以后,积分区域   Ω   \,\Omega\, Ω不变,则可使用轮换对称性.

  如: Ω = { ( x , y , z )   ∣   x 2 + y 2 + z 2 ⩽ R 2 } \Omega=\{(x,y,z)\,|\,x^2+y^2+z^2\leqslant R^2\} Ω={(x,y,z)x2+y2+z2R2},则有: ∭ Ω f ( x ) d v = ∭ Ω f ( y ) d v = ∭ Ω f ( z ) d v \iiint\limits_{\Omega}f(x)\text{d}v=\iiint\limits_{\Omega}f(y)\text{d}v=\iiint\limits_{\Omega}f(z)\text{d}v Ωf(x)dv=Ωf(y)dv=Ωf(z)dv

(四) 保号性

  设   f ( x , y , z ) \,f(x,y,z) f(x,y,z) g ( x , y , z )   g(x,y,z)\, g(x,y,z)   Ω   \,\Omega\, Ω上可积,且在   Ω   \,\Omega\, Ω上, f ( x , y , z ) ⩽ g ( x , y , z ) f(x,y,z)\leqslant g(x,y,z) f(x,y,z)g(x,y,z),则有:
∭ Ω f ( x , y , z ) d v ⩽ ∭ Ω g ( x , y , z ) d v \iiint\limits_\Omega f(x,y,z)\text{d}v\leqslant\iiint\limits_\Omega g(x,y,z)\text{d}v Ωf(x,y,z)dvΩg(x,y,z)dv

3 三重积分的计算方法

(一) 直角坐标法
铅直投影法

  此方法适用于非旋转体.

   1 o    1^o\; 1o确定上下侧曲面   Σ 1 : z = φ 1 ( x , y ) \,\Sigma_1:z=\varphi_1(x,y) Σ1:z=φ1(x,y) Σ 2 : z = φ 2 ( x , y ) \Sigma_2:z=\varphi_2(x,y) Σ2:z=φ2(x,y),得到三重积分的积分区域:
Ω = { ( x , y , z )   ∣   ( x , y ) ∈ D x y , φ 1 ( x , y ) ⩽ z ⩽ φ 2 ( x , y ) } \Omega=\{(x,y,z)\,|\,(x,y)\in D_{xy},\varphi_1(x,y)\leqslant z\leqslant\varphi_2(x,y)\} Ω={(x,y,z)(x,y)Dxy,φ1(x,y)zφ2(x,y)}

   φ 1 ( x , y )   \varphi_1(x,y)\, φ1(x,y)   φ 2 ( x , y )   \,\varphi_2(x,y)\, φ2(x,y)既可以无缝衔接,也可以在中间有一段柱面.

   2 o    2^o\; 2o确定   x O y   \,xOy\, xOy平面投影区域   D x y \,D_{xy} Dxy D x y = { ( x , y )   ∣   . . . } D_{xy}=\{(x,y)\,|\,...\} Dxy={(x,y)...}

   3 o    3^o\; 3o三重积分:
∭ Ω f ( x , y , z ) d v = ∬ D x y d x d y ∫ φ 1 ( x , y ) φ 2 ( x , y ) f ( x , y , z ) d z \iiint\limits_{\Omega}f(x,y,z)\text{d}v=\iint\limits_{D_{xy}}\text{d}x\text{d}y\int^{\varphi_2(x,y)}_{\varphi_1(x,y)}f(x,y,z)\text{d}z Ωf(x,y,z)dv=Dxydxdyφ1(x,y)φ2(x,y)f(x,y,z)dz

切片法

  此方法适用于旋转体.

   1 o    1^o\; 1o确定切片   z   \,z\, z的范围及三重积分区域:
Ω = { ( x , y , z )   ∣   ( x , y ) ∈ D z , a ⩽ z ⩽ b } \Omega=\{(x,y,z)\,|\,(x,y)\in D_z,a\leqslant z\leqslant b\} Ω={(x,y,z)(x,y)Dz,azb}

   2 o    2^o\; 2o确定切片区域   D z \,D_z Dz
D z = { ( x , y )   ∣   . . . } D_z=\{(x,y)\,|\,...\} Dz={(x,y)...}

   3 o    3^o\; 3o三重积分:
∭ Ω f ( x , y , z ) d v = ∫ a b d z ∬ D z f ( x , y , z ) d x d y \iiint\limits_{\Omega}f(x,y,z)\text{d}v=\int_a^b\text{d}z\iint\limits_{D_z}f(x,y,z)\text{d}x\text{d}y Ωf(x,y,z)dv=abdzDzf(x,y,z)dxdy

(二) 柱面坐标变换法

  柱面坐标变换法本质上就是将铅直投影法中的   D x y   \,D_{xy}\, Dxy改用极坐标计算. 无需单独记忆此方法,只要在计算过程中,发现用极坐标计算更方便,就使用极坐标计算.

  特征
    (1)   Ω   \,\Omega\, Ω的边界曲面方程含   x 2 + y 2 \,\color{Blue}x^2+y^2 x2+y2
    (2) 被积函数   f ( x , y , z )   \,f(x,y,z)\, f(x,y,z)   x 2 + y 2 \,\color{Blue}x^2+y^2 x2+y2

  变换
{ x = r cos θ y = r sin θ z = z \begin{cases}x=r\text{cos}\theta\\ y=r\text{sin}\theta\\ z=z\end{cases} x=rcosθy=rsinθz=z

    其中   α ⩽ θ ⩽ β , r 1 ( θ ) ⩽ r ⩽ r 2 ( θ ) , φ 1 ( r cos θ , r sin θ ) ⩽ z ⩽ φ 2 ( r cos θ , r sin θ ) \,\alpha\leqslant\theta\leqslant\beta,r_1(\theta)\leqslant r\leqslant r_2(\theta),\varphi_1(r\text{cos}\theta,r\text{sin}\theta)\leqslant z\leqslant\varphi_2(r\text{cos}\theta,r\text{sin}\theta) αθβr1(θ)rr2(θ)φ1(rcosθ,rsinθ)zφ2(rcosθ,rsinθ)

  三组坐标面含义及其对应柱面坐标最大范围
    (1)   r \color{Blue}\,r r (或用   ρ   \,\rho\, ρ表示):
       r =   r=\, r=常数:以   z   \,z\, z轴为轴的圆柱面;
       0 ⩽ r < + ∞ 0\leqslant r<+\infty 0r<+.
    (2)   θ \color{Blue}\,\theta θ
       θ =   \theta=\, θ=常数:过   z   \,z\, z轴的半平面;
       0 ⩽ θ ⩽ 2 π 0\leqslant \theta\leqslant 2\pi 0θ2π.
    (2)   z \color{Blue}\,z z
       z =   z=\, z=常数:与   x O y   \,xOy\, xOy面平行的平面;
       − ∞ < z < + ∞ -\infty< z<+\infty <z<+.

  三重积分

d v = r d r d θ d z \text{d}v={\color{Blue}r}\text{d}r\text{d}\theta\text{d}z dv=rdrdθdz ∭ Ω f ( x , y , z ) d v = ∫ α β d θ ∫ r 1 ( θ ) r 2 ( θ ) r d r ∫ φ 1 ( r cos θ , r sin θ ) φ 2 ( r cos θ , r sin θ ) f ( r cos θ , r sin θ ) d z \iiint\limits_{\Omega}f(x,y,z)\text{d}v=\int^\beta_\alpha\text{d}\theta\int^{r_2(\theta)}_{r_1(\theta)}{\color{Blue}r}\text{d}r\int^{\varphi_2(r\text{cos}\theta,r\text{sin}\theta)}_{\varphi_1(r\text{cos}\theta,r\text{sin}\theta)}f(r\text{cos}\theta,r\text{sin}\theta)\text{d}z Ωf(x,y,z)dv=αβdθr1(θ)r2(θ)rdrφ1(rcosθ,rsinθ)φ2(rcosθ,rsinθ)f(rcosθ,rsinθ)dz

(三) 球面坐标变换法

  特征
    (1)   Ω   \,\Omega\, Ω的边界曲面方程含   x 2 + y 2 + z 2 \,\color{Blue}x^2+y^2+z^2 x2+y2+z2
    (2) 被积函数   f ( x , y , z )   \,f(x,y,z)\, f(x,y,z)   x 2 + y 2 + z 2 \,\color{Blue}x^2+y^2+z^2 x2+y2+z2

  变换
{ x = r cos θ sin φ y = r sin θ sin φ z = r cos φ \begin{cases}x=r\text{cos}\theta\text{sin}\varphi\\ y=r\text{sin}\theta\text{sin}\varphi\\ z=r\text{cos}\varphi\end{cases} x=rcosθsinφy=rsinθsinφz=rcosφ

    其中   α ⩽ θ ⩽ β , θ 1 ⩽ φ ⩽ θ 2 , r 1 ( φ , θ ) ⩽ r ⩽ r 2 ( φ , θ ) \,\alpha\leqslant\theta\leqslant\beta,\theta_1\leqslant\varphi\leqslant\theta_2,r_1(\varphi,\theta)\leqslant r\leqslant r_2(\varphi,\theta) αθβθ1φθ2r1(φ,θ)rr2(φ,θ)

  三组坐标面含义及其对应球面坐标最大范围
    (1)   r \color{Blue}\,r r
       r =   r=\, r=常数:以原点为心的球面;
       0 ⩽ r < + ∞ 0\leqslant r<+\infty 0r<+
         r   \,r\, r的范围就是从原点扩张出去的球面范围.
    (2)   φ \color{Blue}\,\varphi φ
       φ =   \varphi=\, φ=常数:以原点为顶点、   z   \,z\, z轴为轴的圆锥面
       0 ⩽ φ ⩽ π 0\leqslant \varphi\leqslant {\color{Red}\pi} 0φπ
         φ   \,\varphi\, φ是从   z   \,z\, z轴开始,向外扩张的圆锥面的母线与   z   \,z\, z轴正半轴的夹角.
      注意
        (1) 当   φ = π   \,\varphi=\pi\, φ=π时,圆锥面扩张到极限成为球体.
        (2) φ   \varphi\, φ的确定可能需要找一些几何关系.

    (3)   θ \color{Blue}\,\theta θ
       θ =   \theta=\, θ=常数:过   z   \,z\, z轴的半平面;
       0 ⩽ θ ⩽ 2 π 0\leqslant \theta\leqslant 2\pi 0θ2π
       θ   \theta\, θ的范围从曲面在   x O y   \,xOy\, xOy的投影中确定.

  三重积分
d v = r 2 sin φ d r d φ d θ dv={\color{Blue}r^2\text{sin}\varphi}\text{d}r\text{d}\varphi\text{d}\theta dv=r2sinφdrdφdθ

∭ Ω f ( x , y , z ) d v = ∫ α β d θ ∫ θ 1 θ 2 d φ ∫ r 1 ( φ , θ ) r 2 ( φ , θ ) f ( r cos θ sin φ , r sin θ sin φ , r cos φ ) r 2 sin φ d r \iiint\limits_{\Omega}f(x,y,z)\text{d}v=\int^\beta_\alpha\text{d}\theta\int^{\theta_2}_{\theta_1}\text{d}\varphi\int^{r_2(\varphi,\theta)}_{r_1(\varphi,\theta)}f(r\text{cos}\theta\text{sin}\varphi,r\text{sin}\theta\text{sin}\varphi,r\text{cos}\varphi){\color{Blue}r^2\text{sin}\varphi }\text{d}r Ωf(x,y,z)dv=αβdθθ1θ2dφr1(φ,θ)r2(φ,θ)f(rcosθsinφ,rsinθsinφ,rcosφ)r2sinφdr

  重要关系
x 2 + y 2 + z 2 = r 2 \color{Purple}x^2+y^2+z^2=r^2 x2+y2+z2=r2 x 2 + y 2 = r 2 sin 2 φ \color{Purple}x^2+y^2=r^2\text{sin}^2\varphi x2+y2=r2sin2φ

  坐标变换:有时积分区域中心可能不在原点上,或者积分区域是一个椭球体不能直接使用球坐标,这时就需要进行坐标变换以简化大量计算.

    下面先举一个例子,考虑这个几何体: Ω : ( x − 1 ) 2 + ( y − 1 ) 2 + z 2 4 ⩽ 1 \Omega:(x-1)^2+(y-1)^2+\frac{z^2}{4}\leqslant1 Ω:(x1)2+(y1)2+4z21

    其球面坐标变换就应该设为:
{ x − 1 = r cos θ sin φ y − 1 = r sin θ sin φ z 2 = r cos φ \begin{cases}x-1=r\text{cos}\theta\text{sin}\varphi\\ y-1=r\text{sin}\theta\text{sin}\varphi\\ \frac{z}{2}=r\text{cos}\varphi\end{cases} x1=rcosθsinφy1=rsinθsinφ2z=rcosφ ( 0 < θ < π ,    0 ⩽ φ ⩽ π ,    0 ⩽ r ⩽ 1 ) ({\color{Blue}0<\theta<\pi,\;0\leqslant\varphi\leqslant\pi,\;0\leqslant r\leqslant 1}) (0<θ<π,0φπ,0r1)

    可以先自行思考上面这些坐标参数的范围是怎么变化的. 此时的体积元素会变为:
d v = 2 r 2 sin φ d r d θ d φ \text{d}{v}={\color{Red}2}r^2\text{sin}\varphi\text{d}r\text{d}\theta\text{d}\varphi dv=2r2sinφdrdθdφ

    下面分析发生这些变化的原因.

    注意这个变换同时进行了两种坐标系的变换:平移伸缩.

    平移:对坐标系进行移动,不会改变体积元素的大小.
( x − a ) 2 + ( y − b ) 2 + ( z − c ) 2 ⩽ 1 (x-a)^2+(y-b)^2+(z-c)^2\leqslant1 (xa)2+(yb)2+(zc)21 令 { x − a = r cos θ sin φ y − b = r sin θ sin φ z − c = r cos φ 令\begin{cases}x-a=r\text{cos}\theta\text{sin}\varphi\\ y-b=r\text{sin}\theta\text{sin}\varphi\\ z-c=r\text{cos}\varphi\end{cases} xa=rcosθsinφyb=rsinθsinφzc=rcosφ d v = r 2 sin φ d r d φ d θ \text{d}v=r^2\text{sin}\varphi\text{d}r\text{d}\varphi\text{d}\theta dv=r2sinφdrdφdθ

    伸缩:对坐标系的坐标轴进行拉伸 (使椭球体的积分区域变为一个标准球,这样才能使用球面坐标),会改变体积元素的大小.
x 2 a 2 + y 2 b 2 + z 2 c 2 ⩽ 1 \frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\leqslant1 a2x2+b2y2+c2z21 令 { x a = r cos θ sin φ y b = r sin θ sin φ z c = r cos φ 令\begin{cases}\frac{x}{a}=r\text{cos}\theta\text{sin}\varphi\\ \frac{y}{b}=r\text{sin}\theta\text{sin}\varphi\\ \frac{z}{c}=r\text{cos}\varphi\end{cases} ax=rcosθsinφby=rsinθsinφcz=rcosφ d v = a b c ⋅ r 2 sin φ d r d φ d θ \text{d}v={\color{Red}abc}\cdot r^2\text{sin}\varphi\text{d}r\text{d}\varphi\text{d}\theta dv=abcr2sinφdrdφdθ

        体积元素的比例系数应该是各坐标轴收缩比例的乘积.

4 几何应用

(1) 体积 (空间物体)

  空间物体   Ω   \,\Omega\, Ω的体积为: V = ∭ Ω d v V=\iiint\limits_{\Omega}\text{d}v V=Ωdv

(2) 形心坐标 (空间物体)

  形心:几何形体的中心.

  空间物体   Ω   \,\Omega\, Ω的形心坐标   ( x ˉ , y ˉ , z ˉ )   \,\color{Purple}(\bar{x},\bar{y},\bar{z})\, (xˉ,yˉ,zˉ)计算公式 x ˉ = ∭ Ω x d v ∭ Ω d v = 1 V ⋅ ∭ Ω x d v \bar{x}=\frac{\iiint\limits_\Omega{\color{Blue}x}\text{d}v}{\iiint\limits_\Omega\text{d}v}=\frac{1}{V}\cdot\iiint\limits_\Omega{{\color{Blue}x}\text{d}v} xˉ=ΩdvΩxdv=V1Ωxdv y ˉ = ∭ Ω y d v ∭ Ω d v = 1 V ⋅ ∭ Ω y d v \bar{y}=\frac{\iiint\limits_\Omega{\color{Blue}y}\text{d}v}{\iiint\limits_\Omega\text{d}v}=\frac{1}{V}\cdot\iiint\limits_\Omega{{\color{Blue}y}\text{d}v} yˉ=ΩdvΩydv=V1Ωydv z ˉ = ∭ Ω z d v ∭ Ω d v = = 1 V ⋅ ∭ Ω z d v \bar{z}=\frac{\iiint\limits_\Omega{\color{Blue}z}\text{d}v}{\iiint\limits_\Omega\text{d}v}==\frac{1}{V}\cdot\iiint\limits_\Omega{{\color{Blue}z}\text{d}v} zˉ=ΩdvΩzdv==V1Ωzdv

  其中: V   V\, V为物体的体积.

  形心公式逆用
∭ Ω x d v = x ˉ ⋅ ∭ Ω d v = x ˉ ⋅ V \iiint\limits_\Omega{\color{Blue}x}\text{d}v=\bar{x}\cdot \iiint\limits_\Omega\text{d}v=\bar{x}\cdot V Ωxdv=xˉΩdv=xˉV ∭ Ω y d v = y ˉ ⋅ ∭ Ω d v = y ˉ ⋅ V \iiint\limits_\Omega{\color{Blue}y}\text{d}v=\bar{y}\cdot \iiint\limits_\Omega\text{d}v=\bar{y}\cdot V Ωydv=yˉΩdv=yˉV ∭ Ω z d v = z ˉ ⋅ ∭ Ω d v = z ˉ ⋅ V \iiint\limits_\Omega{\color{Blue}z}\text{d}v=\bar{z}\cdot \iiint\limits_\Omega\text{d}v=\bar{z}\cdot V Ωzdv=zˉΩdv=zˉV

  在计算三重积分时,遇到   ∭ Ω x d v \,\iiint\limits_\Omega{\color{Blue}x}\text{d}v Ωxdv ∭ Ω y d v \iiint\limits_\Omega{\color{Blue}y}\text{d}v Ωydv ∭ Ω z d v \iiint\limits_\Omega{\color{Blue}z}\text{d}v Ωzdv,并且几何体规则(可以直接看出形心)、体积易于确定时,应立即想到形心公式的逆用. 通过逆用形心公式,可以简化计算.

5 物理应用

(1) 质量 (空间物体)

  若   ρ ( x , y , z )   \,\rho(x,y,z)\, ρ(x,y,z)为空间物体   Ω   \,\Omega\, Ω的体密度,则物体质量为:
m = ∭ Ω ρ ( x , y , z ) d v m=\iiint\limits_{\Omega}\rho(x,y,z)\text{d}v m=Ωρ(x,y,z)dv

(2) 质心坐标公式 (空间物体)

  质心:质量的中心.

  空间物体   Ω   \,\Omega\, Ω的质心坐标   ( x ˉ , y ˉ , z ˉ )   \,\color{Purple}(\bar{x},\bar{y},\bar{z})\, (xˉ,yˉ,zˉ)计算公式

    设空间物体   Ω   \,\Omega\, Ω的体密度为   ρ ( x , y , z ) \,\color{Purple}\rho(x,y,z) ρ(x,y,z),则几何体的质心坐标为:

x ˉ = ∭ Ω x ⋅ ρ ( x , y , z ) d v ∭ Ω ρ ( x , y , z ) d v \bar{x}=\frac{\iiint\limits_\Omega{\color{Blue}x\cdot\color{Purple}\rho(x,y,z)}\text{d}v}{\iiint\limits_\Omega{\color{Purple}\rho(x,y,z)}\text{d}v} xˉ=Ωρ(x,y,z)dvΩxρ(x,y,z)dv y ˉ = ∭ Ω y ⋅ ρ ( x , y , z ) d v ∭ Ω ρ ( x , y , z ) d v \bar{y}=\frac{\iiint\limits_\Omega{\color{Blue}y\cdot\color{Purple}\rho(x,y,z)}\text{d}v}{\iiint\limits_\Omega{\color{Purple}\rho(x,y,z)}\text{d}v} yˉ=Ωρ(x,y,z)dvΩyρ(x,y,z)dv z ˉ = ∭ Ω z ⋅ ρ ( x , y , z ) d v ∭ Ω ρ ( x , y , z ) d v \bar{z}=\frac{\iiint\limits_\Omega{\color{Blue}z\cdot\color{Purple}\rho(x,y,z)}\text{d}v}{\iiint\limits_\Omega{\color{Purple}\rho(x,y,z)}\text{d}v} zˉ=Ωρ(x,y,z)dvΩzρ(x,y,z)dv

  注意
    (1) 从形式上看,质心公式只是在形心公式分子的三重积分内部多乘了一个   ρ ( x , y , z ) \,\color{Purple}\rho(x,y,z) ρ(x,y,z).
    (2) 当空间物体密度分布均匀(即   ρ ( x , y , z )   \,\rho(x,y,z)\, ρ(x,y,z)为常数)时,质心与形心重合.
    (3) 重心:重心是重力平衡的重心,质心重心是重合的.

(3) 转动惯量 (空间物体)

  若   ρ ( x , y , z )   \,\rho(x,y,z)\, ρ(x,y,z)为空间物体   Ω   \,\Omega\, Ω的体密度,则其转动惯量计算公式为:

     Ω   \,\Omega\, Ω   x   \,x\, x的转动惯量为
I x = ∭ Ω ( y 2 + z 2 ) ⋅ ρ ( x , y , z ) d v {\color{Green}I_x}=\iiint\limits_\Omega{\color{Blue}(y^2+z^2})\cdot{\color{Purple}\rho(x,y,z)}\text{d}v Ix=Ω(y2+z2)ρ(x,y,z)dv

     Ω   \,\Omega\, Ω   y   \,y\, y的转动惯量为
I y = ∭ Ω ( x 2 + z 2 ) ⋅ ρ ( x , y , z ) d v {\color{Green}I_y}=\iiint\limits_\Omega{\color{Blue}(x^2+z^2})\cdot{\color{Purple}\rho(x,y,z)}\text{d}v Iy=Ω(x2+z2)ρ(x,y,z)dv

     Ω   \,\Omega\, Ω   z   \,z\, z的转动惯量为
I z = ∭ Ω ( x 2 + y 2 ) ⋅ ρ ( x , y , z ) d v {\color{Green}I_z}=\iiint\limits_\Omega{\color{Blue}(x^2+y^2})\cdot{\color{Purple}\rho(x,y,z)}\text{d}v Iz=Ω(x2+y2)ρ(x,y,z)dv

     Ω   \,\Omega\, Ω原点的转动惯量为
I O = ∭ Ω ( x 2 + y 2 + z 2 ) ⋅ ρ ( x , y , z ) d v {\color{Green}I_O}=\iiint\limits_\Omega{\color{Blue}(x^2+y^2+z^2})\cdot{\color{Purple}\rho(x,y,z)}\text{d}v IO=Ω(x2+y2+z2)ρ(x,y,z)dv
  一般情况
    设   M ( x , y , z )   \,M(x,y,z)\, M(x,y,z)   Ω   \,\Omega\, Ω上的一点,   l   \,l\, l为一条直线,   M   \,M\, M到直线   l   \,l\, l的距离为   d \,d d,则   Ω   \,\Omega\, Ω   l   \,l\, l的转动惯量为:
I l = ∭ Ω d 2 ⋅ ρ ( x , y , z ) d v {\color{Green}I_l}=\iiint\limits_\Omega{\color{Blue}d^2}\cdot{\color{Purple}\rho(x,y,z)}\text{d}v Il=Ωd2ρ(x,y,z)dv

(4) 引力 (空间物体)

  若空间物体   Ω   \,\Omega\, Ω的体密度为   ρ ( x , y , z ) \,\rho(x,y,z) ρ(x,y,z),则物体对点   M ( x 0 , y 0 , z 0 )   \,M(x_0,y_0,z_0)\, M(x0,y0,z0)处质量为   m   \,m\, m的质点引力   ( F x , F y , F z )   \,\color{Purple}(F_x,F_y,F_z)\, (Fx,Fy,Fz)的计算公式为:

F x = G m ∭ Ω ρ ( x , y , z ) ( x − x 0 ) [ ( x − x 0 ) 2 + ( y − y 0 ) 2 + z 0 2 ] 3 2 d v {\color{Green}F_x}=Gm\iiint\limits_\Omega\frac{{\color{Purple}\rho(x,y,z)}{\color{Blue}(x-x_0)}}{[(x-x_0)^2+(y-y_0)^2+z_0^2]^{\frac{3}{2}}}\text{d}v Fx=GmΩ[(xx0)2+(yy0)2+z02]23ρ(x,y,z)(xx0)dv F y = G m ∭ Ω ρ ( x , y , z ) ( y − y 0 ) [ ( x − x 0 ) 2 + ( y − y 0 ) 2 + z 0 2 ] 3 2 d v {\color{Green}F_y}=Gm\iiint\limits_\Omega\frac{{\color{Purple}\rho(x,y,z)}{\color{Blue}(y-y_0)}}{[(x-x_0)^2+(y-y_0)^2+z_0^2]^{\frac{3}{2}}}\text{d}v Fy=GmΩ[(xx0)2+(yy0)2+z02]23ρ(x,y,z)(yy0)dv F z = G m ∭ Ω ρ ( x , y , z ) ( z − z 0 ) [ ( x − x 0 ) 2 + ( y − y 0 ) 2 + z 0 2 ] 3 2 d v {\color{Green}F_z}=Gm\iiint\limits_\Omega\frac{{\color{Purple}\rho(x,y,z)}{\color{Blue}(z-z_0)}}{[(x-x_0)^2+(y-y_0)^2+z_0^2]^{\frac{3}{2}}}\text{d}v Fz=GmΩ[(xx0)2+(yy0)2+z02]23ρ(x,y,z)(zz0)dv

   G   G\, G为引力常量.

内附1-19章的实战程序。 目录 第1章 c#语言及其开发环境 实例001 根据需要创建所需解决方案 实例002 统一窗体中控件的字体设置 实例003 设置程序代码行号 实例004 通过“格式”菜单布局窗体 实例005 为项目添加dll文件引用 实例006 为项目添加已有类 实例007 为项目添加第三方控件 实例008 为项目添加已有窗体 第2章 c#语言基础 实例009 利用for循环输出多行语句 实例010 输入并输出姓名 实例011 使用值类型和引用类型输出不同的字段 实例012 判断当前系统日期是星期几 实例013 定义局部变量输出不同的字段 实例014 定义循环内部变量并输出变量的值 实例015 定义常量计算圆的周长 实例016 使用“+”编写双重意义的表达式 实例017 使用小括号括起来的表达式 实例018 使用算术运算符开发简单计算器 实例019 使用条件运算符判断指定年份是不是闰年 实例020 使用typeof关键字获取类的内部结构 实例021 巧用位移运算符获取汉字编码值 实例022 使用异或运算符对数字进行加密 第3章 流程控制语句 实例023 利用if…else语句判断分数是否及格 实例024 利用switch语句判断时间 实例025 利用while语句判断大小 实例026 打印九九乘法表 实例027 使用break语句提前退出循环语句 实例028 使用continue语句转移至循环开始处 实例029 使用流程控制语句报销业务花销 实例030 输出当前系统时间 实例031 利用for循环实现完数计算 实例032 开发一个猜数字游戏 第4章 字符与字符串 实例033 字母与ascii码的转换 实例034 获取字符串中汉字的个数 实例035 从字符串中分离文件路径、文件名及扩展名 实例036 对字符串进行加密与解密 实例037 开发一个进制转换器 实例038 将字符串的每个字符进行颠倒输出 实例039 根据标点符号对字符串进行分行 实例040 将汉字转换为拼音 实例041 商品金额的大小写转换 实例042 根据年份判断十二生肖 实例043 将字母全部转换为大写或小写 实例044 汉字与区位码的转换 第5章 数组和集合 实例045 在数组中添加一个元素 实例046 在数组中添加一个数组 实例047 计算两个矩形矩阵的乘积 实例048 获取多维数组的行数与列数 实例049 使用快速排序法对一维数组进行排序 实例050 使用sort方法对数组进行快速排序 实例051 按指定条件在数组中检索元素 实例052 反转数组中元素的顺序 实例053 使用希尔排序法对一维数组进行排序 实例054 向班级集合中添加学生信息 实例055 不改变长度删除数组中的元素 实例056 删除数组元素后改变其长度 第6章 c#面向对象程序设计 实例057 创建类的对象 实例058 使用构造函数 实例059 通过定义方法求一个数的平方 实例060 使用重载方法实现不同类型数据的计算 实例061 使用属性存储用户编号和姓名 实例062 使用索引器 实例063 通过类继承计算梯形面积 实例064 封装类实现一个简单的计算器 实例065 通过结构计算矩形的面积 实例066 通过结构计算圆形的面积 实例067 使用面向对象思想查找字符串中的所有数字 实例068 通过类的多态性确定人类的说话行为 第7章 异常处理和程序调试 实例069 使用try…catch语句捕获异常 实例070 根据实际年龄判断虚岁,使用try…catch捕获异常 实例071 调试程序执行时出现的结果 实例072 使用异常处理语句捕获异常 实例073 捕获连接数据库异常 第8章 windows窗体 实例074 简单的登录窗体 实例075 关闭窗体提示 实例076 创建简单的mdi应用程序 实例077 实现重复高效地利用基窗体 实例078 尝试制作一个半透明渐显窗体 实例079 使窗体标题栏文字右对齐 实例080 窗口间移动按钮 实例081 窗体中滚动的字幕 实例082 使用任意组件拖动窗体 实例083 窗体换肤程序 第9章 windows应用程序常用控件 实例084 在c#中设计出色彩斑斓的按钮 实例085 自动删除textbox控件中的非法字符 实例086 在richtextbox控件中替换文本文字 实例087 利用richtextbox控件实现文字定位与标示 实例088 将数据表中的字段添加到combobox控件中 实例089 对listbox控件中的数据进行排序 实例090 listbox控件拒绝添加重复信息 实例091 限制用户名称长度及设置密码文本 实例092 带查询功能的combobox控件 实例093 利用选择控件实现权限设置 实例094 利用richtextbox控件显示图文数据 实例095 在listbox控件间交换数据 第10章 windows应用程序高级控件 实例096 使用imagelist组件制作动画图片 实例097 在combobox下拉列表中显示图片 实例098 在listview控件中实现修改功能 实例099 将数据库数据添加到listview控件 实例100 在listview控件中绘制底纹 实例101 在treeview控件节点中显示图片 实例102 使用树型列表动态显示菜单 实例103 使用treeview控件遍历磁盘目录 实例104 使用errorprovider组件验证文本框输入 实例105 使用helpprovider组件调用帮助文件 实例106 使listview控件中的选择项高亮显示 实例107 在列表视图中拖动视图项 实例108 实现带复选框的treeview控件 实例109 将xml文件节点绑定到treeview控件中 实例110 修改treeview控件的节点文本 第11章 c#面向对象高级技术 实例111 利用接口实现选择不同的语言 实例112 使用接口作为方法参数进行编程 实例113 自定义抽象类计算圆形的面积 实例114 重写抽象方法实现多态性 实例115 使用密封类密封登录用户信息 实例116 使用密封类封装个人身份证信息 实例117 使用迭代器显示公交车站点 实例118 通过迭代器实现文字的动态效果 实例119 使用分部类制作一个计算器 实例120 使用分部类显示员工信息 实例121 使用泛型存储不同类型的数据列表 实例122 使用泛型去掉数组中的重复数字 实例123 通过重写虚方法实现加法运算 实例124 使用迭代器实现倒序遍历 实例125 通过泛型查找数组中的元素 第12章 ado.net数据访问技术 实例126 连接加密的access数据库 实例127 使用odbc dsn连接sql server数据库 实例128 使用ado.net对象录入数据 实例129 利用存储过程录入数据 实例130 使用oledbdatareader读取文本文件的内容 实例131 使用sqldatareader读取用户登录信息 实例132 使用断开式连接的方式录入数据 实例133 使用断开式连接批量更新数据库中的数据 实例134 使datagridview控件中被选定单元格的所在行变色 实例135 在datagridview控件中隔行换色 实例136 连接excel文件 实例137 读取和保存用户头像 实例138 判断是否重复输入数据 实例139 删除datagridview控件中的指定行 实例140 将access数据库导入excel文件中 第13章 水晶报表与打印 实例141 设计带有背景图的水晶报表 实例142 设置水晶报表的打印日期与时间 实例143 设置水晶报表中节的背景图片 实例144 打印窗体中的数据 实例145 打印商品入库单据 实例146 使用打印控件实现分页打印 实例147 动态绑定水晶报表 实例148 在水晶报表中使用公式字段 实例149 设计分组统计报表 实例150 打印一个空学生证 实例151 自定义横向或纵向打印 实例152 自定义打印页码范围 第14章 文件及数据流技术 实例153 根据日期动态建立文件 实例154 将长文件名转换成短文件名 实例155 获取所有逻辑磁盘目录 实例156 使用递归法删除文件夹中的所有文件 实例157 按行读取文本文件中的数据 实例158 使用缓冲流复制文件 实例159 文件批量更名 实例160 复制文件时显示复制进度 实例161 对指定文件夹中的文件进行分类存储 实例162 将文本文件转换成网页文件 实例163 伪装文件夹 实例164 word目录提取工具 第15章 gdi+绘图 实例165 在图像中实现自定义标记 实例166 辉光效果的文字 实例167 渐变效果的文字 实例168 绘制多边形 实例169 简单画图程序 实例170 仿qq截图功能 实例171 模拟石英钟 实例172 绘制贝塞尔曲线 实例173 绘制图形验证码 实例174 以椭圆形显示图像 实例175 使用双缓冲技术绘图 实例176 批量添加图片水印 第16章 线程的使用 实例177 使用线程读取数据库中的数据 实例178 使用线程制作qq农场小游戏 实例179 使用线程实现大容量数据的计算 实例180 使用多线程制作端口扫描工具 实例181 使用线程扫描局域网ip地址 实例182 使用线程休眠控制图片以百叶窗效果显示 实例183 使用线程控制向窗体中拖放图片并显示 实例184 使用线程制作动画效果的状态栏 实例185 使用线程遍历文件夹 实例186 使用线程实现从左向右以拉伸的方式显示图像 第17章 网络编程技术 实例187 通过ip地址获取主机名称 实例188 创建web页面浏览器 实例189 获取网络信息及流量 实例190 远程关闭与重启计算机 实例191 设计点对点聊天程序 实例192 电子邮件的发送与接收 实例193 获取网络中所有工作组名称 实例194 列出指定工作组中的所有计算机名 实例195 监测当前网络连接状态 实例196 使用udp协议设计聊天室 第18章 注册表技术 实例197 禁止运行注册表 实例198 使应用程序开机自动运行 实例199 获取本机安装的软件清单 实例200 禁止使用windows任务管理器 实例201 清除ie地址栏中的历史网址 实例202 将磁盘驱动器隐藏 实例203 禁止使用命令提示符 实例204 禁止修改ie浏览器主页 实例205 设置ie浏览器的默认主页 实例206 设置ie浏览器的默认下载路径 第19章 c#语言新技术 实例207 使用隐式类型局部变量实现字母的大小写转换 实例208 使用扩展方法显示员工信息 实例209 使用lambda表达式查找指定字符串 实例210 检查序列中是否包含指定元素 实例211 使用linq在一个循环中遍历多个数组 实例212 过滤文章中包含指定单词的句子 实例213 使用linq生成随机序列 实例214 筛选指定类型的元素 实例215 使用linq技术对对象进行筛选操作 实例216 使用linq技术对对象进行排序操作 实例217 使用linq技术对对象进行聚合操作 实例218 使用linq技术对对象进行联接操作 第20章 windows应用程序打包部署 实例219 打包程序时设置桌面图标 实例220 打包.net framework 4.0框架
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值