1. 什么是二次型椭圆? 令X=[x1, x2],矩阵 A = [ a b b c ] A=\begin{bmatrix}a&b\\b&c\end{bmatrix} A=[abbc], 其特征值分别为 λ 1 、 λ 2 \lambda_1、\lambda_2 λ1、λ2,单位正交特征向量为 v 1 、 v 2 v_1、v_2 v1、v2 卡迪尔坐标系标准正交基 e 1 、 e 2 e_1、e_2 e1、e2 2. 二次型与椭圆方程的关系 以下e1、e2代表矩阵A的特征向量。 3. 证明:二次型椭圆轴在特征向量上