8月23日计算机视觉理论学习笔记——图像检索


前言

本文为8月23日计算机视觉理论学习笔记——图像检索,分为两个章节:

  • 相似图像检索;
  • 在高维空间检索。

一、相似图像检索

1

1、颜色

将一张图像描述成一个256 维度的特征向量。

2

  • 自编码器: 通过神经网络进行特征提取出针对学习样本的通用特征降维方法。

3

  • 颜色特征提取:
    • 目标:统计图片的颜色成分 ⇒ 颜色聚类直方图;
    • 方法:使用 K-means 对图片 Lab 像素值进行聚类。

4

  • 颜色特征相似度计算:
    1. 颜色直方图距离:EMD(Earth Mover Distance,推土机距离);
    2. 色差距离:CIEDE2000——Lab 空间中两个颜色之间的视觉相似度;
      • 色差容忍度(Tolerance):无法感知的色差。
    3. EMD 距离直观解释:
      • 三个土堆:每个土堆有5个单位的土量;
      • 三个土坑:每个土坑能容纳的土量分别为 3、7、5;
      • 不同土堆和土坑之间的距离不同,分别是 1、2、4;
      • 一趟只能搬运1单位的土;
      • 目标:以最小的行走距离(EMD),将所有土堆运输到土坑。
      • 解决方案:E1⇒ H1: 3⇒ H2: 2, E2⇒ H2: 5⇒ H3: 5,距离=3×1+2×2+5×1+5×1=17。

5
6

2、纹理(texture)

重复模式:元素或基元按一定规则排列。

  • 纹理特征:

    • 反映同质现象;
    • 包含物体表面结构组织排列的重要信息。
  • Gabor 滤波器组: 类似于人类的生物视觉系统:

    • 频域:属于加窗傅里叶变换;
    • 空域:一个高斯核函数和正弦平面波的乘积;
    • 尺度:6频率:
      • 频率:1、2、3、4、5、6;
      • 尺寸:25、35、49、69、97、137.
    • 8方向:
      • 0、22.5、45、67.5、90、112.5、135、157.5.

7

  • Gabor 纹理特征提取:
    1. 彩色图片灰度化;
    2. 提取灰度图的 Gabor 滤波器特征;
    3. 使用 K-means++ 聚类所有像素的 Gabor 特征。

3、局部特征

(1)、局部特征点特征提取

  • 局部特征点;
  • 特征描述子。

8

(2)、图之间的相似度匹配

  • 两个图 SIFT 点集之间的匹配对数;
  • 双向匹配。

9

4、Bag of Visual Word 视觉词汇的字典

由图片集的所有视觉词汇构成,不是现成的,需要构建:

  • 特征检测:特征点——SIFT、SURF等;
  • 特征表示:SIFT 描述子、颜色、纹理等;
  • 字典生成:K-means 等聚类。

二、在高维空间检索

为解决从海量且具有高维度的数据集合中找到最相似的数据,需采用近邻查找技术(Nearest Neighbor)加快查找过程。

1、KD-Tree

用于多维度检索的二叉平衡树。

  • 构建过程:
    1. 输入:N个D维空间的数据点;
    2. 确定 split 值——方差最大的维度;
    3. 确定分割点——split 维度上的中值点,首次为根节点;
    4. 确定分割面——垂直 split 维度的超平面;
    5. 确定左右子树:
      • 左子树:split 维度上小于分割点;
      • 右子树:split 维度上大于分割点。
    6. 迭代以上步骤,直到空间只包含一个数据点。

示例:

  1. 输入:(2, 3), (5, 4), (4, 7), (9, 6), (7, 2), (8, 1);
  2. 确定 (7, 2)是根节点;
  3. 左子树:(2, 3), (5, 4), (4, 7);
  4. 右子树:(8, 1), (9, 6)。

10

  • 最近邻查询: 从根节点开始,根据每个维度的 split 维进行左右子树的查询,直到叶子节点。

示例:查询点 (2, 4.5)

  • 路径:(7, 2) ⇒ (5, 4) ⇒ (4, 7);
  • 回溯:(5, 4) ⇒ (2, 3)。

2、局部敏感哈希 LSH

使 2个相似度很高的数据以较高的概率映射成同一个 hash 值,而令2个相似度很低的数据以极低的概率映射成同一个 hash 值。

11

  • 构建 LSH 索引:
    1. 重构 LSH 函数 g g g:串接 k个具有 ( r 1 , r 2 , P 1 , P 2 ) (r1, r2, P_1, P_2) (r1,r2,P1,P2) 局部敏感性的哈希原子函数;
    2. 独立、随机选取 L个 LSH 函数;
    3. 构建 L个 LSH 索引表;
    4. 计算查询的 L个 LSH 值。

3、原子哈希函数 P-stable LSH

h a , b ( υ ) = [ a ⋅ υ + b r ] : R d → N h_{a, b}(\upsilon ) = [\frac{a\cdot \upsilon + b}{r} ]: \mathcal{R}^d → \mathcal{N} ha,b(υ)=[raυ+b]:RdN

  • 把d维向量 υ \upsilon υ 映射为一条直线上的一个整数值;
  • 随即投射 a a a:在 P-stable 分布上独立、随机选取的d维向量;
  • 桶宽 r r r:映射直线上的分段长度;
  • 随机偏移 b b b:在 [ 0 , r ] [0, r] [0,r] 上均匀随机选取的偏移值。

12


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值