关于minimize跟驰豫的问题

本文详细解析了LAMMPS软件中minimize与驰豫的概念及其应用。minimize用于最优化初始构型,实现局部势能最小化;而驰豫则是一个物理过程,涉及温度,用于达到全局能量动态平衡。在不同温度条件下,两者的使用策略也有所不同。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

minimize跟驰豫

不要把minimize跟驰豫同等概念而言.

大家在用LAMMPS时minimize的命令都会用到的, 一般是用来最优化初始构型, 保证初始构型的势能最优化.

LAMMPS中minimize是一个

速度(温度)无关

的命令,也就是说可以认为此命令只是通过调节分子间位置来获得一个局部势能最小态的构型. 如果此时体系的温度正好又是0K, 那么可以认为此时用minimize获得的局部势能最小态就是全局势能最小态. 所以你想在LAMMPS中获得一个体系全局势能最低的初始构型体系,那么先用veloctiy将温度设成0.0000001K(LAMMPS里不允许0K), 再用minize就可以获得一个全局势能最低构型.

驰豫

则是一个跟温度有关的过程,我理解的驰豫过程指的是: 体系内分子间动能和势能相关转换达到一个体系总能量相对稳定的动态平衡过程,驰豫后体系内势能,动能保持在一个很小波动的稳定态.

那么由上可知:

如果你现在做的是不控温拉伸, 每次加载一个应变量后体系为一个NVE系综, 此时让体系驰豫, 那么此时更合理的驰豫命令就是run, 再给一个足够长的run time后, 那么体系内势能动能相互转换来达到全局动平衡,达到这一平衡所需的时间就是我们说的驰豫时间, 而在每一次加载应变后体系所需的迟豫时间也是不等的.

如果做的是低温下的拉伸,那么势必会导致每次加载应变后,体系内势能减少,转变为热能,

如果做的是高温下的拉伸,那么有可能导致每次加载应变后,体系内热能减少,转变为热能,

而关于这到底是热变势还是势变热,有个热力学第二定理的判定标准:

“体系总是朝熵增方向前进.”

但是如果体系是处于恒温下的拉伸时, 每一次加载应变后体系不再是一个NVE的, 而是一个NVT或NPT的,具体选择NVT还是NPT得看你期望是V的波动小(NVT)还是P的波动小(NPT)了.

加载应变量后由于体系并未处于一个动平衡态, 又此时系统它处于一恒温热浴下时, 体系温度也就是体系内分子动能是不变的, 那么体系此时势能的变化量会全部由热浴负责供给或吸引(拉伸一般是热浴吸热, 熔化一般则是热浴供热), 因为同时需要用到fix temp/rescale(等温度标度)来控温, 结合足够长的run time, 这样就是我们常说的升温退火来使体系驰豫达到一个全局能量动稳定态.

如果你现在做的是近0K(LAMMPS里不允许0K)的拉伸, 由于温度总是控制在0K, 每次加载一个应变量后,用run time驰豫时体系势能会转变成热能后,热能又被热浴成0了, 所以可以认为0K的驰豫就是在朝体系全局势能最优态前进的过程,也就是局部势能最优态, 那么此时我们就可以用minize来完成0K情况下的驰豫了.

在0K时用它比之run time的驰豫的好处在于每次加应变后用minize完成驰豫所需步数比自己用run设定的步数更有依据.

——————————————————
minimize 是一个数学过程, 消除掉体系中能量很高的作用, 如bad connection

但由于体系原子数太多, 势能面极为复杂, 单单靠minimize 很容易落在某个local minimum中

这个不是平衡态.

驰豫是一个物理过程, 完全模拟真实的时间演化,

给原子赋以热运动, 就可以使体系越过各个local m 达到global m,

“体系总是朝熵增方向前进”, 熵到最大时候, 体系才算是充分平衡

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值