机器学习之决策树

目录

一.决策树的相关概念

1.什么是决策树

2.决策树的构造步骤

3.构造决策树的三种常用算法

4.信息增益和基尼指数

二.ID3和CART算法构造决策树

1.ID3算法构造决策树

2.CART算法构造决策树

3.两种算法结果比较

三.总结

1.实验总结


一.决策树的相关概念

1.什么是决策树

        决策树是一种基本的分类与回归方法。决策树模型呈树形结构,在分类问题中,表示基于特征对实例进行分类的过程。它可以认为是if-then规则的集合,也可以认为是定义在特征空间与类空间上的条件概率分布。其主要优点是模型具有可读性,分类速度快。学习时,利用训练数据,根据损失函数最小化的原则建立决策树模型。预测时,对新的数据,利用决策树模型进行分类。

2.决策树的构造步骤

        (1)特征选择:这是构造决策树的关键步骤,目的是选择将元组最好地划分成不同类的属性。通常采用信息增益、信息增益比、基尼指数等指标来度量特征的重要性和纯度。目标是使得每个子节点尽可能地纯净,即包含尽可能多的相同类别的实例

        (2)切分数据集:选择最优特征后,将数据集根据该特征的不同取值切分成多个子集。这个过程将数据集根据特征划分为不同的分支,每个分支对应于特征的一个取值,该分支上的数据集包含了特征取值与该分支对应的所有实例。

        (3)递归构建决策树:对于每个子集,重复上述步骤,选择最优特征、切分数据集,直到满足终止条件。终止条件可能包括子集中所有样本都属于同一类别,或者没有更多特征可供选择等。

        (4)剪枝:由于决策树可能存在过拟合问题,为了提高其泛化能力,需要对决策树进行剪枝操作。剪枝过程有预剪枝和后剪枝两种策略,目的是去除那些可能导致过拟合的分支。

1) 开始:构建根节点,将所有训练数据都放在根节点,选择一个最优特征,按着这一特征将训练数据集分割成子集,使得各个子集有一个在当前条件下最好的分类。

2) 如果这些子集已经能够被基本正确分类,那么构建叶节点,并将这些子集分到所对应的叶节点去。

3)如果还有子集不能够被正确的分类,那么就对这些子集选择新的最优特征,继续对其进行分割,构建相应的节点,如果递归进行,直至所有训练数据子集被基本正确的分类,或者没有合适的特征为止。

4)每个子集都被分到叶节点上,即都有了明确的类,这样就生成了一颗决策树

3.构造决策树的三种常用算法

(1)ID3算法:

        1>概念:ID3算法是一种贪心算法,用于构造决策树。它起源于概念学习系统(CLS),以信息熵的下降速度为选取测试属性的标准。ID3算法的核心思想是通过计算每个属性的信息增益来选择最佳的划分属性。信息增益表示了给定属性条件下,数据集的不确定性减少的程度。在每个节点,算法选择尚未被用来划分的具有最高信息增益的属性作为划分标准,然后递归地在每个子节点上应用同样的过程,直到生成的决策树能够完美分类训练样例或满足其他停止条件。

        2>优点:

  • 理论清晰,方法简单。
  • 可以处理不相关特征。

        3>缺点:

  • 只能处理离散型属性,对于连续型属性需要离散化。
  • 倾向于选择取值较多的属性作为划分属性,这可能导致过拟合。
  • 没有剪枝策略,容易生成过于复杂的树。

(2)C4.5算法:

        1>概念:C4.5算法是对ID3算法的一个扩展,由Ross Quinlan开发。C4.5算法同样使用信息增益作为选择划分属性的标准,但在处理连续特征、缺失值和剪枝等方面进行了优化。C4.5能够处理具有连续值的属性,通过离散化处理来选择最佳的划分点。此外,C4.5还引入了剪枝策略,通过删除一些可能导致过拟合的分支来提高决策树的泛化能力。C4.5算法的目标是通过学习找到一个从属性值到类别的映射关系,用于对新的未知类别的实体进行分类。

        2>优点:

  • 继承了ID3算法的优点。
  • 能够处理连续型属性。
  • 引入了剪枝策略,提高了模型的泛化能力

        3>缺点:

  • 在构造树的过程中,需要对数据集进行多次扫描和排序,导致算法效率较低。
  • 只适用于能够驻留在内存的数据集,难以处理大规模数据集。

(3)CART算法:

        1>概念:CART算法,全称Classification and Regression Trees,即分类与回归树算法。它既可用于分类问题,也可用于回归问题。CART算法使用基尼指数作为选择划分属性的标准。在分类问题中,CART算法根据特征值将数据集划分为多个子集,通过选择一个最佳划分特征和划分阈值来构建决策树。在回归问题中,CART算法同样根据特征值划分数据集,但构建的是回归树。CART算法生成的决策树是结构简洁的二叉树,每个非叶子节点都有两个分支。

        2>优点:

  • 既可以用于分类,也可以用于回归。
  • 生成的决策树是二叉树,结构简洁,易于理解。
  • 引入了剪枝策略,提高了模型的泛化能力。

        3>缺点:

  • 对样本的输入划分比较细致,如果个别样本发生较大的变动,决策树就需要进行调整。
  • 如果某些特征的取值较多,生成的决策树会比较庞大,影响决策效率。

4.信息增益和基尼指数

        信息增益和基尼指数都是评估数据集划分纯度和选择最佳特征的重要指标,它们各自具有不同的特点和适用场景,在决策树的构建过程中发挥着关键作用。

       1>信息增益:表示数据集中某个特征的信息使得类的不确定性减少的程度。在机器学习中,每个特征可以看作是一个信息源,每个特征值对应一个信息。特征对训练数据集的信息增益,定义为集合的熵与特征给定条件下集合的条件熵之差。通过计算信息增益,我们可以衡量每个特征对于分类模型的贡献程度,并选择最佳的特征进行数据集的划分。

熵定义为信息的期望值,如果待分类的事物可能划分在多个类之中,则符号xi的信息定义为:

l(Xi)=-log2*p(Xi)(其中p(xi)是选择该分类的概率)

为了计算熵,我们需要计算所有类别所有可能值所包含的信息期望值,通过下式可得:

H=-\sum_{i=1}^{n}P(Xi)*log2*P(Xi)(其中n为分类数目)

       2>基尼指数:也称为基尼不纯度,表示在样本集合中一个随机选中的样本被分错的概率。基尼指数越小,表示集合中被选中的样本被分错的概率越小,即集合的纯度越高。在构建决策树时,基尼指数可以帮助我们确定最佳的特征和特征值来分割数据集,从而构建出高效准确的分类模型。

Gini(D) = 1-\sum_{k=1}^{|y|}P(k)*P(k)

直观来说,Gini(D)反映了从数据集D中随机抽取两个样本,其类别标记不一致的概率,因此Gini(D)越小,则数据集D的纯度越高。

属性a的基尼指数定义为:

Gini_index(D,a)=\sum_{v=1}^{V}\frac{|{D}^v|}{|D|}Gini({D}^v)

二.ID3和CART算法构造决策树

1.ID3算法构造决策树

(为便于理解,利用不大的数据集实现)

(1)创建数据集以及标签:

def createDataSet():
    dataSet = [
        ['青绿', '蜷缩', '浊响', '清晰', '凹陷', '硬滑', '好瓜'],
        ['乌黑', '蜷缩', '沉闷', '清晰', '凹陷', '硬滑', '好瓜'],
        ['乌黑', '蜷缩', '浊响', '清晰', '凹陷', '硬滑', '好瓜'],
        ['青绿', '蜷缩', '沉闷', '清晰', '凹陷', '硬滑', '好瓜'],
        ['浅白', '蜷缩', '浊响', '清晰', '凹陷', '硬滑', '好瓜'],
        ['青绿', '稍蜷', '浊响', '清晰', '稍凹', '软粘', '好瓜'],
        ['乌黑', '稍蜷', '浊响', '稍糊', '稍凹', '软粘', '好瓜'],
        ['乌黑', '稍蜷', '浊响', '清晰', '稍凹', '硬滑', '好瓜'],
        ['乌黑', '稍蜷', '沉闷', '稍糊', '稍凹', '硬滑', '坏瓜'],
        ['青绿', '硬挺', '清脆', '清晰', '平坦', '软粘', '坏瓜'],
        ['浅白', '硬挺', '清脆', '模糊', '平坦', '硬滑', '坏瓜'],
        ['浅白', '蜷缩', '浊响', '模糊', '平坦', '软粘', '坏瓜'],
        ['青绿', '稍蜷', '浊响', '稍糊', '凹陷', '硬滑', '坏瓜'],
        ['浅白', '稍蜷', '沉闷', '稍糊', '凹陷', '硬滑', '坏瓜'],
        ['乌黑', '稍蜷', '浊响', '清晰', '稍凹', '软粘', '坏瓜'],
        ['浅白', '蜷缩', '浊响', '模糊', '平坦', '硬滑', '坏瓜'],
        ['青绿', '蜷缩', '沉闷', '稍糊', '稍凹', '硬滑', '坏瓜']
    ]
    features = ['色泽', '根蒂', '敲声', '纹理', '脐部', '触感']
    return dataSet,features

(2)计算给定数据集的熵:利用字典进行数量统计并计算熵

def calShannonEnt(dataSet):
    numEntries = len(dataSet)
    labelCounts = {}
    for featVec in dataSet:
        currentLabel = featVec[-1]
        if currentLabel not in labelCounts.keys():
            labelCounts[currentLabel] = 0
            labelCounts[currentLabel] += 1
        else:
            labelCounts[currentLabel] += 1
    shannonEnt = 0.0
    for key in labelCounts:
        prob = float(labelCounts[key])/numEntries
        shannonEnt -= prob * log(prob,2)
    return shannonEnt

(3)按照给定的特征划分数据集:返回划分后的数据集的结果

def splitDataSet(dataSet, axis, value):
    retDataSet = []
    for featVec in dataSet:
        if featVec[axis] == value:
            reducedFeatVec = featVec[:axis]
            reducedFeatVec.extend(featVec[axis+1:])
            retDataSet.append(reducedFeatVec)
    return retDataSet

(4)选择最好的数据集的划分方式并输出每个特征的熵和信息增益

def choosebest(dataSet):
    numFeatures = len(dataSet[0])-1
    baseEntropy = calShannonEnt(dataSet)
    #print(baseEntropy)
    bestinfo = 0.0; beatFeature = -1
    for i in range(numFeatures):
        featList = [example[i] for example in dataSet]
        uniqueVals = set(featList)
        newEntropy = 0.0
        for value in uniqueVals:
            subDataSet = splitDataSet(dataSet, i, value)
            prob = len(subDataSet)/float(len(dataSet))
            newEntropy += prob * calShannonEnt(subDataSet)
        infoGain = baseEntropy - newEntropy
        print("第", i + 1, "个特征的信息熵为:", newEntropy)
        print("第", i + 1, "个特征的信息增益为:", infoGain)
        if(infoGain > bestinfo):
            bestinfo = infoGain
            beatFeature = i
    return beatFeature

(5)绘制决策树

def majorityCnt(classList):
    classCount = {}
    for vote in classList:
        if vote not in classCount.key():
            classCount[vote] = 0
            classCount[vote] += 1
    sortedClassCount = sorted(classCount.iteritems(),key=operator.itemgetter(1),reverse=True)
    return sortedClassCount[0][0]

def createTree(dataSet,labels):
    classList = [example[-1] for example in dataSet]
    if classList.count(classList[0]) == len(classList):
        return classList[0]
    if len(dataSet[0]) == 1:
        return majorityCnt(classList)
    bestFeat = choosebest(dataSet)
    bestFeatLabel = labels[bestFeat]
    myTree = {bestFeatLabel:{}}
    del(labels[bestFeat])
    featValues = [example[bestFeat] for example in dataSet]
    uniqueVals = set(featValues)
    for value in uniqueVals:
        subLabels = labels[:]
        myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet,bestFeat,value),subLabels)
    return myTree

(6)运行结果如下:

2.CART算法构造决策树

(1)创建数据集和特征

def createDataSet():
    dataSet = [
        ['青绿', '蜷缩', '浊响', '清晰', '凹陷', '硬滑', '好瓜'],
        ['乌黑', '蜷缩', '沉闷', '清晰', '凹陷', '硬滑', '好瓜'],
        ['乌黑', '蜷缩', '浊响', '清晰', '凹陷', '硬滑', '好瓜'],
        ['青绿', '蜷缩', '沉闷', '清晰', '凹陷', '硬滑', '好瓜'],
        ['浅白', '蜷缩', '浊响', '清晰', '凹陷', '硬滑', '好瓜'],
        ['青绿', '稍蜷', '浊响', '清晰', '稍凹', '软粘', '好瓜'],
        ['乌黑', '稍蜷', '浊响', '稍糊', '稍凹', '软粘', '好瓜'],
        ['乌黑', '稍蜷', '浊响', '清晰', '稍凹', '硬滑', '好瓜'],
        ['乌黑', '稍蜷', '沉闷', '稍糊', '稍凹', '硬滑', '坏瓜'],
        ['青绿', '硬挺', '清脆', '清晰', '平坦', '软粘', '坏瓜'],
        ['浅白', '硬挺', '清脆', '模糊', '平坦', '硬滑', '坏瓜'],
        ['浅白', '蜷缩', '浊响', '模糊', '平坦', '软粘', '坏瓜'],
        ['青绿', '稍蜷', '浊响', '稍糊', '凹陷', '硬滑', '坏瓜'],
        ['浅白', '稍蜷', '沉闷', '稍糊', '凹陷', '硬滑', '坏瓜'],
        ['乌黑', '稍蜷', '浊响', '清晰', '稍凹', '软粘', '坏瓜'],
        ['浅白', '蜷缩', '浊响', '模糊', '平坦', '硬滑', '坏瓜'],
        ['青绿', '蜷缩', '沉闷', '稍糊', '稍凹', '硬滑', '坏瓜']
    ]
    features = ['色泽', '根蒂', '敲声', '纹理', '脐部', '触感']
    numList = []  # [3, 3, 3, 3, 3, 2]
    for i in range(len(features)):
        numList.append(len(featureDic[features[i]]))
    newDataSet = np.array(dataSet)
    # 得到训练数据集
    trainIndex = [0, 1, 2, 3, 5, 6, 9, 13, 14, 15, 16]
    trainDataSet = newDataSet[trainIndex]
    # 得到剪枝数据集
    pruneIndex = [4, 7, 8, 10, 11, 12]
    pruneDataSet = newDataSet[pruneIndex]

    return np.array(dataSet), trainDataSet, pruneDataSet, features

(2)计算基尼指数

def calGini(dataArr):
    numEntries = dataArr.shape[0] #shape [0] 表示行数,即数据集样本总数
    classArr = dataArr[:, -1] #表示是好瓜还是坏瓜
    uniqueClass = list(set(classArr))
    Gini = 1.0
    for c in uniqueClass:
        Gini -= (len(dataArr[dataArr[:, -1] == c]) / float(numEntries)) ** 2
    return Gini

(3)划分数据集

def splitDataSet(dataSet, ax, value):
    return np.delete(dataSet[dataSet[:, ax] == value], ax, axis=1)

(4)计算给定的数据集的在属性ax上的基尼指数

def calSplitGin(dataSet, ax, labels):
    newGini = 0.0  # 划分完数据后的基尼指数
    # 对每一种属性
    for j in featureDic[ax]:
        axIndex = labels.index(ax)
        subDataSet = splitDataSet(dataSet, axIndex, j)
        prob = len(subDataSet) / float(len(dataSet))
        if prob != 0:  
            newGini += prob * calGini(subDataSet)
    return newGini

(5)根据基尼指数得到最好的分类特征

def chooseBestSplit(dataSet, labelList):
    bestGain = 1
    bestFeature = -1
    n = dataSet.shape[1]
    # 对每一个特征
    for i in range(n - 1):
        newGini = calSplitGin(dataSet, labelList[i], labelList)
        print(f"{labelList[i]}   {newGini}")
        if newGini < bestGain:
            bestFeature = i
            bestGain = newGini
    return bestFeature

(6)构造决策树

def majorityCnt(classList):
    classCount = {}
    for vote in classList:
        if vote not in classCount:
            classCount[vote] = 0
        classCount[vote] += 1
    sortedClassCount = sorted(classCount.items(),
                              key=operator.itemgetter(1),
                              reverse=True)
    return sortedClassCount[0][0]

def createTree(dataSet, labels):
    classList = dataSet[:, -1]
    # 如果基尼指数为0,即D中样本全属于同一类别,返回
    if calGini(dataSet) == 0:
        return dataSet[0][-1]
    # 属性值为空,只剩下类标签
    if len(dataSet[0]) == 1:
        return majorityCnt(classList)
    # 得到增益最大划分的属性、值
    bestFeatIndex = chooseBestSplit(dataSet, labels)  # bestFeat 是最优划分属性的坐标
    bestFeatLabel = labels[bestFeatIndex]
    myTree = {bestFeatLabel: {}}  # 创建字典,即树的节点。
    labelsCopy = labels[:]
    del (labelsCopy[bestFeatIndex])
    uniqueVals = featureDic[bestFeatLabel]  # 最好的特征的类别列表
    for value in uniqueVals: 
        subLabels = labelsCopy[:]
        subDataSet = splitDataSet(dataSet, bestFeatIndex, value)
        if len(subDataSet) != 0:
            myTree[bestFeatLabel][value] = createTree(subDataSet, subLabels)
        else:
            myTree[bestFeatLabel][value] = majorityCnt(classList)
    return myTree

(7)运行结果如下:

3.两种算法结果比较

         由以上的运行结果可知,ID3算法以信息增益为指标计算出的最好的特征为第四个特征,即:“纹理”;而CART算法以基尼指数为指标计算出的最好的特征为第五个特征,即“脐部”。因为两个算法计算出的最优的特征不同,因此所构造出的决策树也不同。

         所以可以得出,不同的构造决策树的算法,以不同的指标作为标准所计算出的最优特征会不同,因而构造出的决策树也会有所不同。

(以下图,上图为ID3算法构建的决策树;下图为CART算法构建的决策树)

三.总结

1.实验总结

       通过本次决策树相关知识的实验,我明白了机器学习中的ID3算法和CART算法是构建决策树的重要方法,两者均通过不同的标准来选择最优的划分属性。

       ID3算法采用信息增益作为划分标准,通过计算每个属性划分数据集前后的信息熵之差来衡量其信息量。信息增益越大,表示使用该属性进行划分所获得的“纯度提升”越大。然而,ID3算法倾向于选择取值较多的属性,可能导致决策树过于复杂。CART算法则采用基尼指数作为划分标准,它反映了从数据集中随机抽取两个样本,其类别标记不一致的概率。CART算法既可用于分类也可用于回归,对于分类问题,CART选择基尼指数最小的属性作为最优划分属性;对于回归问题,则采用平方误差最小化准则。

       总之,通过本次的实验,我对于如何构建决策树的具体流程有了更多的认识。同时,也学会了如何计算相关的信息增益以及基尼指数;并如何利用这些决策指标来实现分类完成决策树的构建。不同的构建决策树的算法,所得出的最优特征以及构建出的决策树也会有所不同。

  • 22
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值