【ML】L1和L2正则化的区别

本文详细介绍了正则化的功能,特别是L1和L2范数正则化在降低过拟合风险中的作用。L1正则化倾向于产生稀疏解,适合特征选择,而L2正则化能保持模型稳定,产生小参数值。L1损失函数(LAD)对异常值更鲁棒,L2损失函数(LSE)的解更稳定。选择正则化项应考虑问题特性和需求。
摘要由CSDN通过智能技术生成
一、正则化的作用(功能)

正则项的作用:降低模型过拟合的风险,通常常用的有L1范数正则化L2范数正则化,作为单独一项(正则项)加入到损失函数中,也可以自己作为损失函数。

总结:L1和L2正则化项,又叫惩罚项,是为了限制模型的参数,防止模型过拟合而加在损失函数后面的一项。

二、L1和L2范数

https://www.kaggle.com/residentmario/l1-norms-versus-l2-norms
在这里插入图片描述
简单来说也就是范数其实在 [0,+∞)范围内的值,是向量的投影大小,在机器学习中一般会勇于衡量向量的距离。范数有很多种,我们常见的有L1-norm和L2-norm,其实还有L3-norm、L4-norm等等,所以抽象来表示,我们会写作Lp-norm,一般表示为|| x x x||p :
在这里插入图片描述
对于上面这个抽象的公式,如果我们代入p值,若p为1,则就是我们常说的L1-norm:
在这里插入图片描述
若p为2,则是我们常说的L2-norm:
在这里插入图片描述
我们引用文章里的图片,L2-norm的距离就是两个黑点之间的绿线,而另外的3条线,都是L1-norm的大小。
在这里插入图片描述

三、L1和L2正则化项

在上面我们有提及到,L1、L2范数可以用于损失函数里的一个正则化项,作用就是降低模型复杂度,减小过拟合的风险。这里的正则化项,存在的目的就是作为一个“惩罚项”,对损失函数中的某一些参数做一些限制,是结构风险最小化策略的体现,就是选择经验风险(平均损失函数)和模型复杂度同时较小的模型

针对线性回归模型,假设对其代价函数里加入正则化项,其中L1和L2正则化项的表示分别如下所示,其中λ >= 0,是用来平衡正则化项和经验风险的系数。

  • (1)使用L1范数正则化,其模型也被叫作Lasso回归(Least Absolute Shrinkage and Selection Operator,最小绝对收缩选择算子)。 【模型各个参数的绝对值之和】【L1服从拉普拉斯分布】
  • (2)使用L2范数正则化,其模型被叫做Ridge回归,中文为岭回归。 【模型各个参数的平方和的开方值】【L2服从高斯分布】
    在这里插入图片描述
四、机器学习中如何选择正则化项

思考:上面介绍的L1和L2范数正则化都有着降低过拟合风险的功能,但它们有什么不同?我们到底应该选择哪一个呢,两者之间各有什么优势和适用场景?

Q1:L1和L2正则化项的区别?
  • 首先,我们从上面那张二维的图可以看出,对于L2-norm,其解是唯一的,也就是绿色的那条;而对于L1-norm,其解不唯一,因此L1正则化项,其计算难度通常会高于L2的。
  • 其次,L1通常是比L2更容易得到稀疏输出的,会把一些不重要的特征直接置零,至于为什么L1正则化为什么更容易得到稀疏解,可以看下图:

在这里插入图片描述
上图代表的意思就是目标函数-平方误差项的等值线和L1、L2范数等值线(左边是L1),我们正则化后的代价函数需要求解的目标就是在经验风险和模型复杂度之间的平衡取舍,在图中形象地表示就是黑色线与彩色线的交叉点。

对于L1范数,其图形为菱形,二维属性的等值线有4个角(高维的会有更多),“突出来的角”更容易与平方误差项进行交叉,而这些“突出来的角”都是在坐标轴上,即W1或则W2为0

而对于L2范数,交叉点一般都是在某个象限中,很少有直接在坐标轴上交叉的。
因此L1范数正则化项比L2的更容易得到稀疏解。

Q2:各有什么优势,如何作选择?
  • 1)因为L1范数正则化项的“稀疏解”特性,L1更适合用于特征选择,找出较为“关键”的特征,而把一些不那么重要的特征置为零。
  • 2)L2范数正则化项可以产生很多参数值很小的模型,也就是说这类的模型抗干扰的能力很强,可以适应不同的数据集,适应不同的“极端条件”。
五、L1和L2范数如何作为Loss Function(损失函数)

假设我们有一个线性回归模型,我们需要评估模型的效果,很常规的,我们会用“距离”来衡量误差!
若使用L1-norm来衡量距离,那就是我们的LAD(Least Absolute Deviation,最小绝对偏差),其优化的目标函数如下:
在这里插入图片描述
实际意义上的解释就是预测值与真实值之间的绝对值。

若使用L2-norm,那就是我们的LSE(Least Squares Error,最小二乘误差),其优化的目标函数如下:
在这里插入图片描述
实际意义上的解释就是预测值与真实值之间的平方差。【此处没有进行开方,和前面不同】

针对L1损失和L2损失,两者的差异,可以看下表:

L1 Loss FunctionL2 Loss Function
robust【鲁棒】not very robust【不鲁棒】
unstable solution【不稳定的解】stable solution【稳定的解】
possibly multiple solutions【可能有多个解】always one solution【只有一个解】

L1损失函数的结果更具鲁棒性,也就是说对于异常值更加不敏感。
而根据其范数“天性”,L2的求解更为简单与“唯一”。

今天的总结就到这里,我要开始搬砖了。。。。下期再见,哦对了,感觉不错的请给我点个赞顺便关注我一下,谢谢您!如果有错误,请批评指正,让我们共同进步。

参考

https://mp.weixin.qq.com/s/_UEzFMl5KJ1QC9RjgH-oyA

https://www.cnblogs.com/lyr2015/p/8718104.html

https://zhuanlan.zhihu.com/p/137073968

https://baijiahao.baidu.com/s?id=1621054167310242353&wfr=spider&for=pc

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

机器不学习我学习

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值