入门到进阶 | 多组学技术结合的方法在生物医学研究中的应用

本文探讨了多组学技术与机器学习在生物医学研究中的结合应用,强调了机器学习在疾病亚型识别、生物标志物发现等方面的潜力。通过入门到进阶的学习路径,包括基础概念、深度学习、多组学联合分析等,旨在帮助研究人员掌握多组学数据处理和预测模型构建。课程由知名高校副教授及科研团队骨干主讲,适合生物医学数据挖掘和人工智能算法研究者参与。
摘要由CSDN通过智能技术生成

一、前言

理解⼀种疾病的某种现象仅使用⼀种数据类型是远远不够的,随着高通量测序和多组学的快速发展,生物医学研究开始采取多组学技术结合的方法,传统的信息数据处理算法不能满足大数据的处理要求,机器学习作为从数据中进行学习的算法,可以对不同组学来源(如基因组学、转录组学、蛋白质组学、代谢组学)的数据进行综合分析,开发针对个体多样性的多因素预测模型,可以显著减少需要考虑的潜在治疗组合的空间,并识别其他可能被忽视的组合,并可以添加实验验证的步骤,以提供额外的证据,从而证明预测治疗可能存在的有效性。

机器学习在疾病亚型识别、生物标志物发现、通路分析以及药物发现及其再利用有着更广泛的前景和应用空间。然而,机器学习的应用仍存在一些瓶颈,人工智能研究项目所需的技能和知识匮乏缺失制约着该方向的发展。

二、入门到进阶

1.入门阶段:从机器学习以及机器学习在多组学数据分析及应用基本概念开始,让大家明确机器学习方法的适用性和优势,以及有针对性的对python语言基础进行系统学习,为之后构建相应算法模型框架打下基础。

2.进阶阶段分别讲授深度学习神经网络、经典机器学习模型、多组学联合分析-阐明疾病分子机制、深度学习在组学数据的应用、机器学习+Science五个模块,结合案例实践教学(COVID-19中生物标志物的发现、阿尔茨海默疾病潜在药物靶点筛选、精神障碍人群队列特征、多组学分析胃癌和解析胃癌肿瘤标志物、转录组学的去批次效应、肿瘤的分级预测、多组学构建肝癌患者分型的新算法、神经网络自编码器算法在多组学中的应用、乳腺肿瘤分类模型及评估等)。

3.通过基础入门+进阶实例演练的讲授思路,从初学及应用研究角度出发,实战演练机器学习在多组学整合分析中的数据处理、预测模型以及生物学意义阐述等,助力大家掌握多种机器学习算法模型的构建以及在多组学联

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值