MONAI-增强版UNet

前言

对UNet不了解的,可以参看动手实现基于pytorch框架的UNet模型对resnet不熟悉的同学可以参考经典网络架构学习-ResNet

enhanced UNet VS Basic UNet

  • 卷积部分全部换成残差块链接
  • 激活层(PReLU).
  • 加入了Dropout layers (Dropout).
  • 归化层使用(InstanceNorm3d).
  • 卷积层主要使用 (Conv and ConvTranspose).

网络架构分析

从代码分析可以看出有三部分:

  • The first down layer.
  • The intermediate skip connection based block.
  • The final up layer.

实现参考Left-Ventricle Quantification Using Residual U-Net
在这里插入图片描述

首先,让我们建立一个UNet实例来检查其结构。num_res_units被设置为2,num_res_units设置每层使用几个残差单元,以下代码使用MONAI构建。

from monai.networks.nets import UNet
    from torchinfo import summary

    # 3 layer network with down/upsampling by a factor of 2 at each layer with 2-convolution residual units
    net = UNet(
        spatial_dims=2,
        in_channels=1,
        out_channels=1,
        channels=(4, 8, 16),

        strides=(2, 2),
        num_res_units=2
    )
    print(net)
    summary(net,(1,1,224,224))


UNet(
  (model): Sequential(
    (0): ResidualUnit(
      (conv): Sequential(
        (unit0): Convolution(
          (conv): Conv2d(1, 4, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
          (adn): ADN(
            (N): InstanceNorm2d(4, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
            (D): Dropout(p=0.0, inplace=False)
            (A): PReLU(num_parameters=1)
          )
        )
        (unit1): Convolution(
          (conv): Conv2d(4, 4, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
          (adn): ADN(
            (N): InstanceNorm2d(4, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
            (D): Dropout(p=0.0, inplace=False)
            (A): PReLU(num_parameters=1)
          )
        )
      )
      (residual): Conv2d(1, 4, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
    )
    (1): SkipConnection(
      (submodule): Sequential(
        (0): ResidualUnit(
          (conv): Sequential(
            (unit0): Convolution(
              (conv): Conv2d(4, 8, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
              (adn): ADN(
                (N): InstanceNorm2d(8, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
                (D): Dropout(p=0.0, inplace=False)
                (A): PReLU(num_parameters=1)
              )
            )
            (unit1): Convolution(
              (conv): Conv2d(8, 8, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
              (adn): ADN(
                (N): InstanceNorm2d(8, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
                (D): Dropout(p=0.0, inplace=False)
                (A): PReLU(num_parameters=1)
              )
            )
          )
          (residual): Conv2d(4, 8, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
        )
        (1): SkipConnection(
          (submodule): ResidualUnit(
            (conv): Sequential(
              (unit0): Convolution(
                (conv): Conv2d(8, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                (adn): ADN(
                  (N): InstanceNorm2d(16, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
                  (D): Dropout(p=0.0, inplace=False)
                  (A): PReLU(num_parameters=1)
                )
              )
              (unit1): Convolution(
                (conv): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                (adn): ADN(
                  (N): InstanceNorm2d(16, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
                  (D): Dropout(p=0.0, inplace=False)
                  (A): PReLU(num_parameters=1)
                )
              )
            )
            (residual): Conv2d(8, 16, kernel_size=(1, 1), stride=(1, 1))
          )
        )
        (2): Sequential(
          (0): Convolution(
            (conv): ConvTranspose2d(24, 4, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), output_padding=(1, 1))
            (adn): ADN(
              (N): InstanceNorm2d(4, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
              (D): Dropout(p=0.0, inplace=False)
              (A): PReLU(num_parameters=1)
            )
          )
          (1): ResidualUnit(
            (conv): Sequential(
              (unit0): Convolution(
                (conv): Conv2d(4, 4, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                (adn): ADN(
                  (N): InstanceNorm2d(4, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
                  (D): Dropout(p=0.0, inplace=False)
                  (A): PReLU(num_parameters=1)
                )
              )
            )
            (residual): Identity()
          )
        )
      )
    )
    (2): Sequential(
      (0): Convolution(
        (conv): ConvTranspose2d(8, 1, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), output_padding=(1, 1))
        (adn): ADN(
          (N): InstanceNorm2d(1, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
          (D): Dropout(p=0.0, inplace=False)
          (A): PReLU(num_parameters=1)
        )
      )
      (1): ResidualUnit(
        (conv): Sequential(
          (unit0): Convolution(
            (conv): Conv2d(1, 1, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
          )
        )
        (residual): Identity()
      )
    )
  )
)
===================================================================================================================
Layer (type:depth-idx)                                            Output Shape              Param #
===================================================================================================================
UNet                                                              [1, 1, 224, 224]          --
├─Sequential: 1-1                                                 [1, 1, 224, 224]          --
│    └─ResidualUnit: 2-1                                          [1, 4, 112, 112]          --
│    │    └─Conv2d: 3-1                                           [1, 4, 112, 112]          40
│    │    └─Sequential: 3-2                                       [1, 4, 112, 112]          190
│    └─SkipConnection: 2-2                                        [1, 8, 112, 112]          --
│    │    └─Sequential: 3-3                                       [1, 4, 112, 112]          5,830
│    └─Sequential: 2-3                                            [1, 1, 224, 224]          --
│    │    └─Convolution: 3-4                                      [1, 1, 224, 224]          74
│    │    └─ResidualUnit: 3-5                                     [1, 1, 224, 224]          10
===================================================================================================================
Total params: 6,144
Trainable params: 6,144
Non-trainable params: 0
Total mult-adds (M): 34.85
===================================================================================================================
Input size (MB): 0.20
Forward/backward pass size (MB): 7.83
Params size (MB): 0.02
Estimated Total Size (MB): 8.05
===================================================================================================================

模型结构中Convolution 是MONAI自己封装的卷积层结构
ADN:构建一个由可选的激活层(A)、剔除层(D)和归一化层(N)组成的顺序模块

Convolution

构建一个带有归一化的卷积,可选的滤波,和可选的激活层。

– (Conv|ConvTrans) – (Norm – Dropout – Acti) –

example:

from monai.networks.blocks import Convolution

conv = Convolution(
    spatial_dims=3,
    in_channels=1,
    out_channels=1,
    adn_ordering="ADN",
    act=("prelu", {"init": 0.2}),
    dropout=0.1,
    norm=("layer", {"normalized_shape": (10, 10, 10)}),
)
print(conv)

output:

Convolution(
  (conv): Conv3d(1, 1, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))
  (adn): ADN(
    (A): PReLU(num_parameters=1)
    (D): Dropout(p=0.1, inplace=False)
    (N): LayerNorm((10, 10, 10), eps=1e-05, elementwise_affine=True)
  )
)

ADN 模块
# activation, group norm, dropout
>>> norm_params = ("GROUP", {"num_groups": 1, "affine": False})
>>> ADN(norm=norm_params, in_channels=1, dropout_dim=1, dropout=0.8, ordering="AND")
ADN(
    (A): ReLU()
    (N): GroupNorm(1, 1, eps=1e-05, affine=False)
    (D): Dropout(p=0.8, inplace=False)
)

# LeakyReLU, dropout
>>> act_params = ("leakyrelu", {"negative_slope": 0.1, "inplace": True})
>>> ADN(act=act_params, in_channels=1, dropout_dim=1, dropout=0.8, ordering="AD")
ADN(
    (A): LeakyReLU(negative_slope=0.1, inplace=True)
    (D): Dropout(p=0.8, inplace=False)
)

ResidualUnit

残差单元实现
example:

from monai.networks.blocks import ResidualUnit

convs = ResidualUnit(
    spatial_dims=3,
    in_channels=1,
    out_channels=1,
    adn_ordering="AN",
    act=("prelu", {"init": 0.2}),
    norm=("layer", {"normalized_shape": (10, 10, 10)}),
)
print(convs)

output:

ResidualUnit(
  (conv): Sequential(
    (unit0): Convolution(
      (conv): Conv3d(1, 1, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))
      (adn): ADN(
        (A): PReLU(num_parameters=1)
        (N): LayerNorm((10, 10, 10), eps=1e-05, elementwise_affine=True)
      )
    )
    (unit1): Convolution(
      (conv): Conv3d(1, 1, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))
      (adn): ADN(
        (A): PReLU(num_parameters=1)
        (N): LayerNorm((10, 10, 10), eps=1e-05, elementwise_affine=True)
      )
    )
  )
  (residual): Identity()
)

参考链接

https://github.com/Project-MONAI/tutorials/blob/main/modules/UNet_input_size_constrains.ipynb
convolutions.py
acti_norm.py

  • 2
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
MONAI label是指使用MONAI库进行医学图像分析时,对图像的不同区域进行标记的过程。在MONAI,可以使用自定义的标签来表示不同的区域或结构。可以通过在代码使用el-tree组件来自定义树型结构上的标签名称。例如,可以使用以下代码来自定义标签名称: ```javascript <el-tree> <span slot-scope="{node}" :title="node.label" class="el-tree-node__label node-label"> {{node.label}} </span> </el-tree> ``` 同时,可以使用CSS样式来定义标签的外观。例如,可以使用以下CSS代码来设置标签的宽度、溢出处理和文本省略: ```css .node-label { width: 100%; overflow: hidden; text-overflow: ellipsis; white-space: nowrap; } ``` 这样可以实现自定义的标签名称和外观效果。如果需要使用CPU版本的MONAI,可以参考\[3\]提供的链接。如果需要使用GPU版本的MONAI,可以参考\[4\]提供的链接。 #### 引用[.reference_title] - *1* *2* [「Element」el-tree文字显示不全,解决办法](https://blog.csdn.net/zora_55/article/details/129447833)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [爬虫 + CNN(卷积神经网络)实现名家画作识别与分类](https://blog.csdn.net/zaf0516/article/details/100777824)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值