10路UART、1TOPS的NPU、2路网口、异构多核架构、超高性价比!

RK3562是瑞芯微新推出的一款处理器,有RK3562(商业级)和RK3562J(工业级)两个版本,RK3562处理器拥有四核Cortex-A53@1.8GHz + Cortex-M0@200MHz异构多核架构,支持10路UART、2路CAN、2路网口、3个显示接口、2路Camera等超多外设接口。

除此之外还内置算力高达1TOPS的NPU,支持INT4、INT8、INT16、FP16等多种数据类型,支持TensorFlow、PyTorch、ONNX、TFLite、Caffe、Android NN 等深度学习框架,可以实现高效神经网络推理计算并轻松应对多种AI运算场景。

 RK3562-NPU使用流程

第一步:训练模型

准备训练数据,然后选择TensorFlow、PyTorch、ONNX、TFLite、Caffe等框架训练模型。也可以使用瑞芯微提供的模型。

第二步:模型转换

得到训练好的模型以后,使用RKNN-Toolkit2工具将模型转换为RKNN模型。RKNN模型则是RK3562 NPU可以识别的模型。

第三步:应用开发

根据具体使用需求,将转换后的模型集成到应用程序中

RK3562-NPU案例分享

 在rknn-toolkit2 工具中, 自带了很多测试例程和模型,如下图所示:

 选择tensorflow作为测试框架, 进入tensorflow/ssd_mobilenet_v1/目录下.

打开 test.py,修改对应的平台为 rk3562, 修改如下所示, “-”代表需要删除的内容, “+”代表需要新增的内容。 

if __name__ == '__main__':

# Create RKNN object

- rknn = RKNN(verbose=True)

+ rknn = RKNN()

# Pre-process config

print('--> Config model')

- rknn.config(mean_values=[127.5, 127.5, 127.5], std_values=[127.5, 127.5, 127.5])

+ rknn.config(mean_values=[127.5, 127.5, 127.5], std_values=[127.5, 127.5, 127.5],

target_platform='RK3562')

print('done')

# Load model

@@ -62,7 +62,7 @@ if __name__ == '__main__':

# Init runtime environment

print('--> Init runtime environment')

- ret = rknn.init_runtime()

+ ret = rknn.init_runtime(target='RK3562')

if ret != 0:

print('Init runtime environment failed!')

exit(ret)

修改完并执行该脚本后可以看到知推理图片识别后的结果。

Score 反映的是得分,得分越高说明和被认为的标签相似度越高,圆括号则是对应识别出的物体的坐标。 命令行中出现了八行被识别物体的坐标和置信度, 和 out.jpg 可以对应。out.jpg 如下图所示 

更多参考

更多详细案例请参考:

1.【北京迅为NPU视频教程】:https://b23.tv/W30Wbvu

2.【北京迅为】itop-3562开发板npu使用手册(开发板对应售后群下载)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值