【wsl2-Ubuntu22.04 LTS安装conda,cuda,cudnn从0实现到验证安装成功(保姆级)】

1.前言

1.之前跑深度学习都是在windows下,但是现在从github上下载的代码都是.sh文件,需要linux环境。加之我自己本身只有一台windows主机,所以需要在windows下安装wsl2(网上都说这个才可以支持显卡调用),所以就放弃了安装虚拟机等方法,在wsl2上安装了Ubuntu22.04版本,下面的步骤就是基于上述情况进行展开。
2.后续的目标是通过本地windows的PyChram专业版通过Remote Development远程开发连接到我自己的wsl2-Ubtuntu中,最终实现在windows下对linux代码的模型训练和验证。

2.首先检验自己的目前开发环境

在Ubuntu中进入自己的目录yjj中,运行下述代码,可以发现当前Ubuntu中没有任何的cuda工具包。

nvcc -V

在这里插入图片描述

3.下载并配置anaconda

3.1 下载anaconda

anaconda官网下载地址
可以发现Linux下有三个可以选择的安装包。
在这里插入图片描述
首先输入命令,查看自己符合的安装包。

uname -m

我的电脑是x86_64,所以下载第一个就可以。
在这里插入图片描述
接下来将下载好的安装包,我是放在windows下的E:\application\Anaconda3-2024.10-1-Linux-x86_64.sh中,此时需要在Ubuntu中进入mnt目录,因为Ubuntu不能识别windows路径,wsl2会将Windows的磁盘挂载在mnt路径下,如下图所示,进入mnt目录可以看到c盘和e盘,就是对应windows下的c盘和e盘。
在这里插入图片描述

3.2 安装anaconda

之后通过运行下面的代码,安装anaconda。一路点击空格+yes。跳转下方界面,会提示安装路径默认在/home/yjj/anaconda3下,选择默认路径就好。

bash e/application/Anaconda3-2024.10-1-Linux-x86_64.sh


然后进入yjj目录,发现anaconda3已经安装到所在目录中。
在这里插入图片描述

3.3配置anaconda环境变量

接下来需要配置环境变量,首先输入

nano ~/.bashrc

进入环境变量文件,在最后一行导入anaconda的环境变量,如下图所示,之后ctrl+X,点击y,然后回车退出文件。(养成好习惯,最后输入source ~./bashrc更新配置环境文件)

export PATH="/home/yjj/anaconda3/bin:$PATH"

在这里插入图片描述
最后验证conda --version,显示版本,至此anaconda3在Ubuntu上安装完毕。
在这里插入图片描述

4.下载并配置cuda

4.1 下载并安装cuda

首先确定好自己的第一个项目所需要的虚拟环境的cuda版本,以我为例,因为我需要实现segment anything,github官方给出的建议是The code requires python>=3.8, as well as pytorch>=1.7 and torchvision>=0.8. Please follow the instructions here to install both PyTorch and TorchVision dependencies. Installing both PyTorch and TorchVision with CUDA support is strongly recommended.
根据pytorch官网,找到符合满足条件的cuda版本,我这里下载cuda12.2,下图所示cuda官网。在Ubuntun中依此运行下面七行代码。

在这里插入图片描述
运行完毕之后,打开Ubuntu的usr/local目录下,cuda被安装到这里
在这里插入图片描述

4.2 配置cuda环境变量

接下来需要配置cuda的环境变量。输入下述代码进入配置环境变量文件。

nano ~/.bashrc

根据自己下载的包,添加如下路径

export DISPLAY=172.21.64.1:0  #这个是之前配置wsl的IPV4地址,这里不需要配置
export PATH="/home/yjj/anaconda3/bin:$PATH" # 这个是上面配置anaconda的,这里也不需要配置
export PATH=/usr/local/cuda/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH
export PATH=/usr/local/cuda-12.2/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda-12.2/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
export CUDA_HOME=/usr/local/cuda-12.2

在这里插入图片描述
最后ctrl+x,y,回车退出,然后运行source ~/.bashrc更新配置文件,使改动生效。
最终输入nvcc -V验证cuda安装是否成功,如下图所示安装成功
在这里插入图片描述

5.下载并配置cudnn

5.1 下载cudnn

进入cudnn官网,选择适合上面安装cuda的cudnn版本https://developer.nvidia.com/rdp/cudnn-archive
下载
之后把下载包复制到Ubuntu下的yjj目录下
在这里插入图片描述

5.2 解压并安装cudnn

依此执行下述命令,解压,复制cudnn中的bin等目录到cuda中(类似windows中把cudnn中的bin,lib,include三个目录中的文件复制到cuda对应目录中)。

tar -xvf cudnn-linux-x86_64-8.9.4.25_cuda12-archive.tar.xz
sudo cp cudnn-*-archive/include/cudnn*.h /usr/local/cuda/include
sudo cp -P cudnn-*-archive/lib/libcudnn* /usr/local/cuda/lib64 
sudo chmod a+r /usr/local/cuda/include/cudnn*.h /usr/local/cuda/lib64/libcudnn*

最后输入下述命令验证是否安装成功,显示输出8,9,4代表安装的cudnn版本为8.9.4和上述下载的版本一致,至此cudnn的下载和安装结束。(提示 cannot use constexpr here since this is a C-only file 的问题是由于 constexpr 是 C++ 中的关键字,而这个文件是用 C 语言编写的(通常 C 文件以 .c 为后缀)。因此,constexpr 不能直接用于 C 语言文件中。
这并不表示 CUDNN 没有安装好,而是编译代码时出现了语言特性不兼容的问题。)

cat /usr/local/cuda/include/cudnn_version.h | grep CUDNN_MAJOR -A 2

在这里插入图片描述

### 安装 Qiime2 生物信息学软件于 WSL #### 设置 Windows 开发者模式并启用 WSL 为了在 Windows Subsystem for Linux (WSL)安装 Ubuntu 和后续的 Qiime2 软件,需先确保操作系统处于开发者模式,并已激活 WSL 功能。这一步骤可通过进入 Windows 的设置菜单,在应用部分找到适用于 Linux 的 Windows 子系统选项来完成[^1]。 #### 安装 Ubuntu 22.04 LTS 通过 Microsoft Store 或其他可信链接下载最新版本的 Ubuntu 22.04 LTS 并按照提示进行安装安装过程中会要求设定用户名与密码用于新建立的用户账户。对于提高国内用户的网络访问速度,建议更换默认的 APT 源至更快速稳定的镜像站点[^2]。 #### 配置 Miniconda 环境 Miniconda 是一个轻量的 Python 发行版,非常适合用来管理不同项目的依赖关系。启动刚安装好的 Ubuntu 终端,执行命令获取 Miniconda 安装脚本: ```bash wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh ``` 接着运行该 Shell 文件来进行安装过程中的各项配置操作: ```bash bash Miniconda3-latest-Linux-x86_64.sh ``` 遵循屏幕上的指示直到结束;通常情况下,默认的选择就足够满足需求了。完成后记得关闭再重新开启一次终端窗口以便使更改生效。 #### 安装 Qiime2 有了上述准备之后就可以着手安装 Qiime2 了。官方推荐的方式是在 Conda 上创建一个新的环境专门供其使用,这样能有效防止与其他项目间可能存在的冲突问题发生。具体做法如下所示: ```bash conda create -n qiime2-2023.7 --channel conda-forge qiime2=2023.7 ``` 这里假设选择了 `2023.7` 版本作为目标部署对象,请根据实际需要调整相应参数值。成功构建好专属空间后,可以通过下面这条指令随时切换到此特定环境下工作: ```bash conda activate qiime2-2023.7 ``` 此时即完成了整个流程中最核心的部分——Qiime2安装任务。 #### 结合 RStudio 使用 Ubuntu 如果希望进一步利用 RStudio 来辅助数据分析,则还需要额外做一些准备工作。一种简单的方法是从 CRAN 获取最新的桌面客户端程序包,将其解压放置于本地磁盘合适位置后再依照常规方式启动应用程序即可实现跨平台协作开发体验。当然也可以考虑借助 Docker 容器化技术或是远程服务器资源来达成相同目的。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值