论文学习——Vector Quantized Diffusion Model for Text-to-Image Synthesis

文章介绍了一种结合VQ-VAE和扩散模型的新型图片生成方法VQ-Diffusion,它通过矢量化潜在空间和掩码替换策略,有效解决了自回归模型的单向误差和预测误差累积问题,生成速度快且质量高。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

引言

  • 这篇文章描述的模型是将vqvae模型和扩散模型结合,进行图片生成。刚好可以用到当前的项目中,使用自回归模型进行音频信息生成,太浪费时间了。

正文

Abstract

文章的核心
  • 提出VQ-Diffusion,矢量量化扩散模型,使用最近开发的DDPM对潜在空间进行建模。
VQ潜在空间适合文本转图片生成
  • 避免现存方法都有的单向误差的出现
  • 融合掩码和替换策略,避免错误累计。
VQDiffusion的比起自回归和GAN的其他模型的成果
  • 同参数下,生成的图片的时间和质量都好于自回归模型
  • 同参数下,生成样本的多样性和质量,都好于GAN模型,而且能够处理更加复杂的场景。

Introduction

NLP的成功给图片生成的启发
  • transformer和注意力机制的在文本生成领域很成功,然后应用到图片生成领域,也很成功,尤其是自回归模型,DALLE就是他的应用样例。
自回归模型的单向误差解释
  • 因为自回归模型需要按照样本的时序信息,从左到右,从上到下,按照特定的方向,进行生成。但是图片的信心不仅仅是来自这两个方向,可能会来自于四面八方,这就到了非自然误差。
预测误差累积
  • 因为当前的预测结果只能根据上一个状态的采样结果,如果上一个状态出现了误差,就会影响当前预测结果,并出现错误累计。然后这个错误会不断传播累积,并影响到后续的所有的样本。
  • 训练过程不会出现,因为训练过程中,会出现真实样本进行引导,并且还有teacher-forcing策略进行引导。
VQDiffusion能够解决预测误差累计和单向误差两个问题
  • 我们提出的VQDiffusion能够解决这两个问题,他是以矢量量化之后的码本序列作为潜在空间,使用扩散模型进行生成。我们提出的模型十分适合文本图片生成。
  • 前向过程是基于马尔可夫链逐步进行破坏输入,采样过程是上述过程的反过程,从前向过程中学习到的分布进行采样。一开始是一个单纯地噪声,然后逐渐对噪声进行降噪,知道生成目标图片。
解决单向误差的方式——每一次预测都是考虑所有token的上下文信息
  • 整个扩散模型是由独立的文本编码器和基于扩散模型的图片解码器构成,其中解码器是在离散的图片编码上执行扩散模型。在推理的第一阶段,所有的图片编码要么是被遮住的,要么是随机的。
  • 扩散模型根据输入的文本编码一个一个估计每一个图片编码的概率密度。每一步推理过程中,扩散模型解码器会利用上一步预测的整个图片的token的所有上下文信息,估计当前分布的概率密度,预测当前步骤下的token。因为预测每一个token都是同时考虑所有上下文,所以清除了单向误差的出现。
解决错误累积的方式——使用基于掩码和替换的扩散策略
  • 故意引入带有遮罩的token和随机的token,让网络模型能够学习预测被遮住的token并且改掉错误的token。在推理阶段,我们会一次更新所有token的概率密度函数,然后根据新的分布,重新对每一个token进行采样。所以我们可以改掉错误的token,避免错误累计。
  • 与传统的无条件图像生成的仅替换扩散策略[1]相比,**掩码标记有效地将网络的注意力引导到掩码区域,从而大大减少了网络要检查的令牌组合的数量。**这种掩码替换扩散策略显着加速了网络的收敛性。
模型测试实验
  • 模型生成效果很棒,比GAN模型能够处理更加复杂的场景。比起大模型,针对特定类型的图片,见过的图片,生成效果会更好。
扩散模型的生成速度快,生成质量高
  • 扩散模型是一次性预测所有的token的数据分布,并不是像自会规模型一样,逐个进行预测,所以生成速率和生成图片的分辨率无关。

Background:Learning Discrete Latent Space of Image Via VQ-VAE

transformer的作用——为什么使用VQVAE
  • transformer是将文本映射被为图片,但是他的计算量取决于文本的长度,是文本长度的平方,这不行。为了降低运算,将像素映射为特定的token,借此来降低计算量。
  • 这就必须要用矢量量化变分编码器了VQVAE。

4 Vector Quantized Diffusion Model

公式化简——文本和图片的相互转换
  • 将图片转为码本序列 x ∈ Z N x \in \mathbb{Z}^N xZN,这个 N N N表示编码的长度,如果码本的个数是K,那么在特定未知的编码序号 x i x_i xi表示为 x i ∈ { 1 , 2 , … , K } x^i \in \{1,2,\ldots,K\} xi{ 1,2,,K} .文本编码token定义如下 y ∈ Z M y \in \mathbb{Z}^M yZM.文本转为图片问题,就可以定义为最大化条件概率 q ( x ∣ y ) q(x|y) q(xy)
自回归模型局限性1——顺序预测,忽略图形的空间结构
  • 图形是二维的,然后在自回归模型只能单向预测,从左到右进行扫描,完全忽略了图片的空间结构。而且,图片中某一个位置的上下文信息不仅仅包括左和上两个方向。
自回归模型的局限性2——测试训练偏差
  • 训练的时候用的是真实的数据集,但是在推理阶段,每一步都是根据之前的预测结果做出的估计,会出现错误累计。
自回归模型的局限性3——生成费时间
  • 生成每一个token都需要完整地过一遍模型,即使生成的而是那种很小的图片,也会这样。
模型提出的关键
  • 针对上述的所有问题,使用非自回归的方式对VQVAE的潜在特征空间进行建模。
  • 所提出的VQ-Diffusion方法利用扩散模型[23,59]最大化概率q(x|y),目前对于扩散模型的研究都是集中在连续扩散模型上,少有是建立在条件离散扩散模型的。
4.1 Discrete diffusion process离散扩散过程
扩散模型中关键部分——转换矩阵的定义
  • 从一个更高的维度上来,前向扩散过程,就是通过马尔可夫链 q ( x t ∣ x t − 1 ) q(x_t|x_{t-1}) q(xt
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值