基于动态博弈及人工势场法和MPC的智能车换道决策和规划控制算法
基于动态博弈的换道决策算法;
设计APF-MPC耦合的运动规划算法;
基于动态博弈及人工势场法和MPC的智能车换道决策和规划控制算法
摘要:智能车在实际驾驶场景中需要准确、高效地进行换道决策和规划控制。本文基于动态博弈及人工势场法和MPC(模型预测控制)提出了一种智能车换道决策和规划控制算法。该算法结合了动态博弈理论中的最优策略计算和稳定性分析,以及人工势场法中的环境感知和路径规划。通过设计APF-MPC耦合的运动规划算法,智能车可以在复杂的交通环境中准确判断换道时机并规划合适的换道路径,提高行驶的安全性和效率。
1. 引言
智能车技术的发展已经取得了巨大的成就,但在换道决策和规划控制方面仍存在一定的挑战。当前的研究主要侧重于静态规划和简单的决策算法,对于动态交通环境中的换道问题仍缺乏深入的研究。因此,本文提出了一种基于动态博弈及人工势场法和MPC的智能车换道决策和规划控制算法,旨在提高智能车在复杂交通场景中的换道效果和驾驶安全性。
2. 动态博弈的换道决策算法
动态博弈理论能够帮助智能车在换道时选择最优的策略。在这个算法中,我们将智能车与其他车辆视为一个动态博弈系统,通过计算纳什均衡来确定最优换道策略。通过建立交通场景的数学模型,考虑各种约束条件和目标函数,智能车可以根据当前的车流情况选择最适合的换道时机和换道动作。
3. 设计APF-MPC耦合的运动规划算法
为了实现智能车的换道规划和控制,我们引入了APF-MPC耦合的运动规划算法。人工势场法(APF)可以通过构建环境的势能场来引导智能车选择合适的路径。MPC则可以利用车辆动力学模型和环境感知数据进行路径规划和控制。APF-MPC算法将两种方法结合起来,通过优化势能场和预测路径,使智能车能够更加准确地换道,并考虑安全性和效率的平衡。
4. 算法实现与仿真结果分析
本文通过在仿真平台上实现算法,并设计了一系列实验来评估算法的效果。实验结果表明,基于动态博弈及人工势场法和MPC的智能车换道决策和规划控制算法能够有效提高智能车的换道性能。在复杂的交通环境中,该算法能够准确判断换道时机,规划合适的换道路径,并保证行驶的安全性和效率。
5. 结论
本文提出了一种基于动态博弈及人工势场法和MPC的智能车换道决策和规划控制算法。该算法综合了动态博弈理论和人工势场法的优势,通过进行最优策略计算和环境感知,实现了智能车在复杂交通场景中的准确换道和高效规划。实验结果表明,该算法能够有效提高智能车的换道性能,并保证行驶的安全性和效率。未来的研究可以进一步优化算法的性能和适应性,以及考虑实际驾驶中的各种复杂情况。
6. 参考文献(不提供)
关键词:智能车,换道决策,规划控制,动态博弈,人工势场法,MPC
相关代码,程序地址:http://imgcs.cn/lanzoun/734827733167.html