改进YOLOv8:提高MPDIoU边界框回归的有效性和准确性

114 篇文章 23 订阅 ¥59.90 ¥99.00
本文提出使用MPDIoU损失函数改进YOLOv8的边界框回归,通过关注目标与最小包围框的关系,增强目标形状和位置的捕获,从而提高检测效果和准确性。在Python中实现示例代码,并展示了训练和测试过程。
摘要由CSDN通过智能技术生成

改进YOLOv8:提高MPDIoU边界框回归的有效性和准确性

YOLOv8是一种广泛使用的目标检测算法,其在准确性和实时性方面具有出色的表现。然而,边界框回归是YOLOv8中一个重要的组成部分,而传统的回归损失函数(如G/IoU和CIoU)在一些情况下可能存在一些问题。因此,本文介绍了一种改进的方法,通过引入MPDIoU损失函数来提高边界框回归的有效性和准确性。

MPDIoU代表最小面积包围框内的IoU(Minimum Enclosing Box-based IoU),它通过计算目标边界框与最小面积包围框之间的IoU来度量两个边界框之间的重叠程度。相比于传统的回归损失函数,MPDIoU考虑了目标边界框与其最紧密包围框之间的关系,因此能够更好地捕捉目标的形状和位置。

下面是一个示例代码,展示了如何在Python中实现改进的YOLOv8算法,并使用MPDIoU作为边界框回归的损失函数。

import torch
import torch.nn as nn

class 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值