Accurate predictions on small data with a tabular foundation model

使用表格基础模型对小数据进行准确预测

论文链接

Accurate predictions on small data with a tabular foundation model
这篇论文提出了 TabPFN,一种基于预训练生成式 Transformer 架构的新型表格数据基础模型。TabPFN 的目标是解决表格数据建模中的挑战,例如数据异构性、缺失值和异常值。

TabPFN 的核心思想:

上下文学习 (ICL): TabPFN 利用 ICL 机制,通过在大量合成的表格数据集上进行预训练,学习到一个通用的预测算法。这使得 TabPFN 能够自动学习处理各种数据挑战,而无需手动设计解决方案。
预训练的生成式 Transformer 架构: TabPFN 的架构基于 Transformer,它能够有效地捕捉表格数据中的长距离依赖关系,并通过生成式模型学习数据的分布。

TabPFN 的优势:

高精度预测: TabPFN 在多个基准测试中表现出色,显著优于现有的表格数据学习方法,包括梯度提升决策树和深度学习模型。
鲁棒性: TabPFN 能够自动学习处理各种数据挑战,例如缺失值、异常值和不重要特征,而无需手动设计解决方案。
基础模型特性: TabPFN 具有基础模型的特性,例如微调、数据生成、密度估计和学习可重用的嵌入表示,使其成为各种应用场景的有力工具。

TabPFN 的应用:

生物医学风险模型: TabPFN 可以用于构建更准确的风险预测模型,例如预测患者患病的风险。
药物发现: TabPFN 可以用于加速药物发现过程,例如预测化合物对特定疾病的治疗效果。
材料科学: TabPFN 可以用于预测材料的特性,例如强度和硬度。

TabPFN 的局限性:

推理速度: TabPFN 的推理速度可能比一些高度优化的方法慢。
内存使用: TabPFN 的内存使用量随数据集大小线性增长,这可能对非常大的数据集造成限制。
可扩展性: TabPFN 的评估主要集中在数据集大小不超过 10,000 个样本和 500 个特征的情况下,其可扩展性到更大的数据集需要进一步研究。

总结:

TabPFN 是一种很有前景的表格数据基础模型,它能够实现高精度预测并具有强大的基础模型特性。TabPFN 的提出为开发更高效、更鲁棒的表格数据学习方法开辟了新的途径,并为各种应用场景提供了强大的工具。

内容概要:本文《2025年全球AI Coding市场洞察研究报告》由亿欧智库发布,深入分析了AI编程工具的市场现状和发展趋势。报告指出,AI编程工具在2024年进入爆发式增长阶段,成为软件开发领域的重要趋势。AI编程工具不仅简化了代码生成、调试到项目构建等环节,还推动编程方式从人工编码向“人机协同”模式转变。报告详细评估了主流AI编程工具的表现,探讨了其商业模式、市场潜力及未来发展方向。特别提到AI Agent技术的发展,使得AI编程工具从辅助型向自主型跃迁,提升了任务执行的智能化和全面性。报告还分析了AI编程工具在不同行业和用户群体中的应用,强调了其在提高开发效率、减少重复工作和错误修复方面的显著效果。最后,报告预测2025年AI编程工具将在精准化和垂直化上进一步深化,推动软件开发行业进入“人机共融”的新阶段。 适合人群:具备一定编程基础,尤其是对AI编程工具有兴趣的研发人员、企业开发团队及非技术人员。 使用场景及目标:①了解AI编程工具的市场现状和发展趋势;②评估主流AI编程工具的性能和应用场景;③探索AI编程工具在不同行业中的具体应用,如互联网、金融、游戏等;④掌握AI编程工具的商业模式和盈利空间,为企业决策提供参考。 其他说明:报告基于亿欧智库的专业研究和市场调研,提供了详尽的数据支持和前瞻性洞察。报告不仅适用于技术从业者,也适合企业管理者和政策制定者,帮助他们在技术和商业决策中更好地理解AI编程工具的价值和潜力。
### 谐振转换器的小信号建模技术 对于谐振转换器而言,精确的小信号模型能够帮助工程师理解系统的动态行为并优化控制器设计。为了建立这样的模型,通常采用状态空间平均法来描述电路的行为。 #### 状态空间平均法 这种方法通过将开关周期内的非线性方程组转化为连续时间下的线性微分方程来进行分析。这使得可以应用经典的控制理论工具去研究稳定性、瞬态响应和其他性能指标[^1]。 ```matlab % MATLAB code snippet to demonstrate state-space averaging technique A = [0, 1; -w^2/L, -R/L]; % State matrix A (example values w=angular frequency, L=inductance, R=resistance) B = [0; 1/L]; % Input matrix B C = eye(2); % Output matrix C D = zeros(2,1); % Direct transmission term D sys = ss(A,B,C,D); step(sys) % Plot step response of the system ``` #### AC小扰动分析 除了上述的方法外,在稳态工作点附近引入交流小扰动也是构建小信号模型的一种常见手段。此过程涉及对直流偏置点附近的变量施加一个小幅度正弦波形,并观察其影响以提取增益和相位特性[^2]。 #### 参考资源推荐 针对希望深入了解该主题的研究人员和技术爱好者,《Power Electronics Handbook》提供了详尽章节专门讨论不同类型的谐振拓扑及其对应的数学表达形式;而《Fundamentals of Power Electronics》则更侧重于基础概念的教学以及实际案例的应用讲解[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值