发表在期刊《Nature》文章《A Pathology Foundation Model for Cancer Diagnosis and Prognosis Prediction》研究了一种在大规模病理数据(如组织切片、细胞影像、基因组信息等)上训练的人工智能模型。该模型不仅应用于癌症的初步诊断,还能基于患者的病理特征、癌症类型及分期等信息,预测疾病的进展情况(如复发、转移和生存期)。作为一种“基础模型”,它具备通用的特征表示能力,支持多种诊断和预后任务的拓展应用,为精准医学和个性化治疗提供了坚实的技术支持。这一模型在癌症的综合管理中意义重大,能够有效辅助病理学家在复杂病理数据中精确识别癌细胞,同时为患者预后提供科学依据,为提升临床决策和诊疗效果提供了创新性工具。
01.引言
该研究论介绍了一种名为CHIEF的病理学基础模型,用于癌症诊断和预后预测。引言首先阐述了组织病理学图像评估在癌症诊断及亚型分类中的关键作用,并回顾了已有人工智能(AI)模型在癌症诊断方面的应用,包括通过深度神经网络识别癌细胞、分类组织学及分子亚型、评估预后以及预测基于全玻片图像(WSIs)的治疗反应等。然而,由于样本来源多样性和切片制备方法的差异,现有模型在可靠病理学评估中的应用存在局限性。为应对这些挑战,研究者提出了CHIEF模型,这是一种通用的机器学习框架,通过自监督预训练和弱监督学习结合1500万张病理图像块,来提供广泛的病理学诊断和预测能力。CHIEF模型应用于癌症检测、肿瘤起源预测、基因组特征识别及生存预测等多项任务中,展现出卓越性能,尤其在肿瘤起源预测方面取得了显著成果。此外,CHIEF模型作为一种通用病理学特征提取器,适用于不同来源和扫描设备的样本,即使样本量较小,也能进行多种预测任务。总结而言,CHIEF模型作为癌症诊断和预后预测的创新性解决方案,展现出高度的适应性和广泛的应用潜力。
02.模型介绍
CHIEF模型的架构是基于机器学习和深度学习的技术构建的,它包含多个模块,每个模块都有其特定的功能。以下是对CHIEF模型架构及其各模块功能的介绍:
一、模型架构概述
CHIEF(Clinical Histopathology Imaging Evaluation Foundation)模型是一种用于癌症诊断和预后预测的病理学基础模型。它采用了自监督和弱监督学习模式下的组织病理学图像分析通用机器学习架构。
二、主要模块及其功能
- 自监督预训练模块
-
功能:该模块使用大量未标记的病理学图像(如1500万张图像块)进行预训练。通过自监督学习,模型能够学习到图像中的潜在特征和表示,为后续的任务提供强大的特征提取能力。
-
技术特点:利用图像块之间的关联性和上下文信息,通过对比学习等方法,使模型能够捕捉到图像中的细微变化和特征。
- 弱监督加强训练模块
-
功能:在自监督预训练的基础上,该模块使用带有标签的病理学图像(如6万张全切片图像)进行加强训练。这些图像覆盖了19个解剖部位,用于训练模型对癌症的识别和分类能力。
-
技术特点:通过整合图像块特征,并结合全局上下文信息,模型能够更准确地识别和分类癌症类型。同时,该模块还采用了弱监督学习方法,利用有限的标签信息来优化模型的性能。
- 特征提取模块
-
功能:该模块负责从输入的病理学图像中提取有用的特征信息。这些特征信息包括图像的纹理、颜色、形状等底层特征,以及更高层次的语义特征。
-
技术特点:采用深度学习技术,如卷积神经网络(CNN)等,对图像进行特征提取和表示。通过多层卷积和池化操作,模型能够逐步提取出更抽象、更高级的特征信息。
- 分类和预测模块
-
功能:该模块利用提取的特征信息对癌症进行分类和预测。它可以识别出不同的癌症类型,并预测患者的生存率等预后信息。
-
技术特点:采用全连接神经网络或支持向量机(SVM)等分类器,对提取的特征信息进行分类和预测。同时,该模块还可以结合其他临床信息(如患者的年龄、性别、病史等)来提高预测的准确性。
- 辅助训练模块
- 功能:为了优化数据利用效率,CHIEF模型在端到端模型基础上加入了两个辅助训练模块。其中一个模块用于预测病理图像中的重要区域,另一个模块则针对病理图像,运用对比学习方法增强模型对不同类型癌症的识别和判断能力。
三、模型优势
-
通用性强:CHIEF模型可以应用于多种癌症类型的诊断和预后预测任务,具有广泛的适用性。
-
准确率高:通过大量的训练和验证,CHIEF模型在癌症检测和分类任务中取得了很高的准确率。
-
可解释性好:模型能够提取出有意义的病理成像特征,为医生提供直观的诊断依据。
综上所述,CHIEF模型的架构包含多个模块,每个模块都有其特定的功能和技术特点。这些模块共同协作,使得CHIEF模型在癌症诊断和预后预测任务中表现出色。
CHIEF模型架构示意图
03.研究结果
一、研究成果概述
哈佛医学院的研究团队在《Nature》上发表了一篇题为“A pathology foundation model for cancer diagnosis and prognosis prediction”的文章,介绍并展示了一种多功能的人工智能诊断模型——CHIEF(Clinical Histopathology Imaging Evaluation Foundation,临床组织病理影像评估基础)。该模型能够对多种癌症进行一系列诊断,比目前许多用于癌症诊断的人工智能方法更进了一步。CHIEF具有ChatGPT式的灵活性,可以执行各种诊断任务,在癌症检测、肿瘤起源表征、基因组突变鉴定和生存预测方面展现出了惊人的能力。
二、实验数据
- 训练数据
- CHIEF模型的训练数据包括1500万张未标记的图像切片,以及来自肺、乳腺、前列腺、结直肠、胃、食道、肾、脑、肝、甲状腺、胰腺、宫颈、子宫、卵巢、睾丸、皮肤、软组织、肾上腺和膀胱等19种组织的60530张完整幻灯片图像(Whole-slide images,WSIs)。
- 测试数据
- 在训练结束后,研究小组对CHIEF的性能进行了测试。测试对象是来自全球24家医院的32个独立数据集上的19491张数字切片。这些数据集涵盖了多种癌症类型,确保了测试的全面性和准确性。
- 准确率
-
在包含11种癌症类型的15个数据集上,CHIEF模型的准确率接近94%。
-
在独立队列的包括食道癌、胃癌、结肠癌和前列腺癌在内的5个活检数据集中,CHIEF的准确率甚至达到了96%。
-
当研究人员在以前从未见过的结肠、肺、乳腺、子宫内膜和子宫颈手术切除肿瘤的切片上测试CHIEF时,该模型的准确率也超过90%。
- 具体任务表现
-
癌细胞检测:CHIEF在癌细胞检测任务中的表现优于其他深度学习方法。它能够准确识别肿瘤组织的数字切片中的癌细胞,为癌症的早期发现提供了强有力的技术支持。
-
肿瘤起源预测:CHIEF能够成功预测癌症的组织起源,并使用外部独立测试集验证了该结果。这有助于医生更准确地了解患者的癌症类型,从而制定更有效的治疗方案。
-
基因组谱鉴定:CHIEF系统能够预测癌症样本的分子谱。例如,在泛症基因突变分析方面,CHIEF预测了9个基因的突变状态,其AUROC(Area Under the Receiver Operating Characteristic Curve,受试者工作特征曲线下面积)大于0.8。此外,CHIEF还发现了GTF2I突变,其可发生在43.4%的胸腺上皮肿瘤患者中,AUROC为0.9111。
-
生存预测:CHIEF能够基于初次诊断时的病理学图像成功预测患者的预后。在所有癌症类型和所有研究队列中,CHIEF都能区分长期生存患者和短期生存患者,且其性能优于其他先进的深度学习方法。具体来说,CHIEF在生存预测任务中的平均c-index为0.74,远高于现有方法(如PORPOISE和DSMIL)的0.62和0.67。在更晚期的癌症患者中,CHIEF的表现比其他AI模型高出10%。
- 其他性能指标
-
在多个独立数据集中,CHIEF的AUROC均表现出色,证明了其稳定性和可靠性。
-
CHIEF在检测弥漫性大B细胞淋巴瘤常见基因EZH2突变的准确率达到96%,在检测甲状腺癌BRAF基因突变方面达到了89%的准确率,在检测头颈癌NTRK1基因突变方面达到了91%的准确率。
CHIEF模型在WSI中精准定位癌变区域
CHIEF模型基于病理图像预测癌症基因突变
CHIEF模型对癌症患者生存预后的预测结果示意图
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。