动态统计滤波

DSOR: A Scalable Statistical Filter for Removing Falling Snow from LiDAR Point Clouds in Severe Winter Weather

结论

介绍了Winter Adverse Driving dataSet (WADS)
a dense, point-wise labeled dataset featuring severe winter weather
提出了两种降雪量和积雪量的分类标签,可用于目标检测、定位和映射以及恶劣天气下的语义和泛视分割等AV任务。未来可能会提供图像及毫米波雷达,在恶劣天气进行数据融合。
DSOR 提高了4%的召回率 减少了28%的处理时间
未来提高表现会考虑采用如论文“Fast statistical outlier removal based method for large 3d point clouds of outdoor environments"的快速聚类及体素降采样的方法。

摘要

the Winter Adverse Driving dataSet (WADS) 第一个多模态恶劣天气数据集
加了标签的数据集和代码在 https://bitbucket.org/autonomymtu/dsor filter.

引言

背景资料:激光雷达对自动驾驶的作用,降雪导致自动驾驶感知的失效。
存在问题:数据集的缺少,目标检测障碍物丢失
研究目的:提供关于恶劣天气的数据集,提出适合的滤波方法
激光雷达的回波在体积上是不均匀的,导致点密度随距离的增加而减小。由降雪引起的噪声,也表现出同样的非均匀性,服从对数正态分布 依据论文**《Towards characterizing the behavior of lidars in snowy conditions》**
研究内容:动态统计滤波的方法根据距离动态地改变滤波阈值。
研究贡献:1、制作了第一个降雪环境下的标注数据集 2、提出了DSOR滤波方法 3、滤波效果的改善

相关研究

12 指出降雨极大影响目标检测算法
13 Rasmussen 得到 小的雪粒子充当了传感器的目标,产生了显著的后向散射。
14 Roy 建立了雪花和激光脉冲之间的相互作用的模型
结果表明,积雪探测集中在传感器附近,探测统计量受激光束特性和降水速率的影响。
10 Michaud 研究表明汽车三维激光雷达探测到雪的概率随与传感器的距离呈对数正态分布。
A 分析了已有的一些数据集
B 19 提出了使用PCA转换点云为2D 并DBSCAN聚类 移除异常值
!!!点云标注工具 《Semantickitti: A dataset for semantic scene understanding of lidar sequences》
用两个新的标签来代表雪 active-snow 在激光雷达的回波中,主动雪捕捉飘落的雪粒子和相关的杂波噪声。
accumulated-snow 捕捉车辆交通和除雪过程中在可行驶路面上积累的积雪
在这里插入图片描述

### 统计滤波原理 统计滤波(Statistical Outlier Removal, SOR)是一种用于点云数据去噪的方法。此方法通过分析点云中每个点与其邻域内其他点之间的距离来识别并移除离群点。具体来说,对于每一个点,计算它到其k近邻的平均距离,并设定一个全局阈值。当某一点的实际平均距离超过该阈值时,则认为这一点可能是异常点或噪声点而予以删除[^2]。 为了更精确地控制哪些点应被视为潜在的噪音源,在实际操作过程中还可以引入额外参数如标准偏差因子,使得只有那些显著偏离正常范围的数据才会被标记为候选去除对象。这种机制有助于保护目标物体表面细节不因过度过滤而受损[^3]。 ### 实现方法概述 在实现上,统计滤波主要包括以下几个步骤: 1. **邻域搜索**:针对每一点选择一定数量最近邻构成局部区域; 2. **描述符计算**:基于选定区域内所有样本点的位置信息求取诸如均值、方差之类的统计数据作为衡量依据; 3. **统计比较**:利用上述得到的结果设置合理的判别准则,区分有效成分同干扰因素之间界限; 4. **决策与更新**:按照既定规则做出保留还是舍弃的选择动作并对剩余部分实施必要的优化措施; 5. **迭代处理**:重复执行以上各阶段直至满足特定收敛条件为止。 ```cpp pcl::StatisticalOutlierRemoval<pcl::PointXYZ> sor; sor.setInputCloud (cloud); sor.setMeanK (50); // 设置考虑多少个临近点 sor.setStddevMulThresh (1.0); // 设定倍数的标准差作为阈值 sor.filter (*cloud_filtered); ``` ### 应用场景 统计滤波广泛应用于各种三维重建项目当中,尤其是在涉及LiDAR扫描仪获取的大规模室外环境建模任务里表现尤为突出。由于自然环境中不可避免存在树木摇晃造成的瞬态遮挡现象以及传感器本身固有的随机误差影响,因此采用此类技术能够有效提升最终成果的质量水平。此外,在机器人导航领域同样发挥着重要作用——帮助清理来自地面反射杂散光所引起的虚假障碍物提示等问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值