大语言模型排行榜(2024年9月)

来源:

SuperCLUE总排行榜(2024年9月):https://www.superclueai.com/

排名(开源+闭源)

排名模型机构总分理科得分文科得分Hard得分使用方式
1ChatGPT-4o-latestOpenAI79.6781.578.6278.87API
2Hunyuan-Turbo-Preview腾讯78.6482.7378.8674.32API
3GPT-4-Turbo-2024-04-09OpenAI76.779.6276.7773.7API
4AndesGPT-2.0OPPO76.2481.2277.7569.75API
5DeepSeek-V2-0628深度求索74.6379.6377.6666.6API
6DeepSeek-Coder-V2-0724深度求索74.0180.1976.9664.87API
7Qwen2-72B-Instruct阿里巴巴73.5176.676.7667.15API
8SenseChat 5.5商汤73.5177.5477.4765.51API
9Claude 3.5 SonnetAnthropic73.3976.6771.3672.15API
10Gemini-1.5-ProGoogle72.8776.2877.6364.71API
11GPT-4o-miniOpenAI72.8176.2975.266.93API
12Doubao_pro_preview字节跳动72.0375.9875.7564.37API
13GLM-4-0520清华&智谱AI70.9973.3974.2965.28API
14Mistral-Large-Instruct-2407Mistral AI70.6273.7171.1966.98POE
15山海大模型4.0云知声70.5275.6176.6359.32API
16ERNIE-4.0-Turbo-8K百度70.1376.2374.859.36API
17Baichuan4百川智能69.0373.4775.0458.58API
18MiniMax-abab6.5s稀宇科技68.8469.9676.6959.87API
19Yi-Large零一万物68.2372.674.4557.64API
20360gpt2-pro36067.7571.0475.8356.38API
21从容大模型1.5云从科技67.7472.876.1654.25API
22Qwen-Max阿里巴巴67.7372.8677.1853.16API
23GPT-4-0613OpenAI67.0871.5270.4759.25API
24Llama-3.1-405B-InstructMeta66.573.768.8956.92POE
25讯飞星火V4.0科大讯飞66.0670.327057.86API
26Step-1-32k阶跃星辰65.7269.7373.5753.86API
27Moonshot(kimi)月之暗面65.3166.875.2253.92网页
28Llama-3.1-70B-InstructMeta63.7267.3968.1855.6POE
29Yi-1.5-34B-Chat-16K零一万物62.0266.0773.1346.87模型
30GLM-4-9B-Chat清华&智谱AI61.1566.571.0845.88模型
31Gemma-2-9b-itGoogle60.9363.4172.5446.85模型
32Qwen2-7B-Instruct阿里巴巴58.7563.9774.3637.94模型
33XVERSE-65B-2-32K元象科技56.4256.8273.9838.48API
34Yi-1.5-9B-Chat-16K零一万物55.256.0169.8139.79模型
35Llama-3.1-8B-InstructMeta53.2858.5362.9138.41POE
36Yi-1.5-6B-Chat零一万物51.9356.664.2234.97模型
37Gemma-2-2b-itGoogle48.9348.364.6433.84模型
38Phi-3-Mini-4K-Instruct微软42.6748.9149.6929.43模型
39Mistral-7B-Instruct-v0.3Mistral AI39.0539.4554.1923.5模型
40Qwen2-1.5B-Instruct阿里巴巴38.9637.4261.6117.85模型
41Baichuan2-7B-Chat百川智能37.5728.7563.9420.01模型
42RWKV-6-World-7BRWKV开源基金会33.4528.2456.6315.49模型
43Gemma-2b-itGoogle29.7424.7348.7415.74模型

 排名(开源)

排名模型机构总分理科得分文科得分Hard得分参数量使用方法
1DeepSeek-V2-0628深度求索74.6379.6377.6666.62360亿API
2DeepSeek-Coder-V2-0724深度求索74.0180.1976.9664.872360亿API
3Qwen2-72B-Instruct阿里巴巴73.5176.676.7667.15720亿API
4Mistral-Large-Instruct-2407Mistral AI70.6273.7171.1966.981230亿POE
5Llama-3.1-405B-InstructMeta66.573.768.8956.924050亿POE
6Llama-3.1-70B-InstructMeta63.7267.3968.1855.6700亿POE
7Yi-1.5-34B-Chat-16K零一万物62.0266.0773.1346.87340亿模型
8GLM-4-9B-Chat清华&智谱AI61.1566.571.0845.8890亿模型
9Gemma-2-9b-itGoogle60.9363.4172.5446.8590亿模型
10Qwen2-7B-Instruct阿里巴巴58.7563.9774.3637.9470亿模型
11XVERSE-65B-2-32K元象科技56.4256.8273.9838.48650亿API
12Yi-1.5-9B-Chat-16K零一万物55.256.0169.8139.7990亿模型
13Llama-3.1-8B-InstructMeta53.2858.5362.9138.4180亿POE
14Yi-1.5-6B-Chat零一万物51.9356.664.2234.9760亿模型
15Gemma-2-2b-itGoogle48.9348.364.6433.8420亿模型
16Phi-3-Mini-4K-Instruct微软42.6748.9149.6929.4338亿模型
17Mistral-7B-Instruct-v0.3Mistral AI39.0539.4554.1923.570亿模型
18Qwen2-1.5B-Instruct阿里巴巴38.9637.4261.6117.8515亿模型
19Baichuan2-7B-Chat百川智能37.5728.7563.9420.0170亿模型
20RWKV-6-World-7BRWKV开源基金会33.4528.2456.6315.4970亿模型
21Gemma-2b-itGoogle29.7424.7348.7415.7420亿模型

 

### 大型语言模型发展趋势预测 随着技术的进步,预计到2025,大型语言模型将继续保持快速发展趋势。根据当前的发展轨迹和技术突破方向,可以预见未来几内几个重要的变化和发展: #### 参数规模不再是唯一衡量标准 使语言模型变得更大并不会本质上使其更擅长理解用户的意图[^2]。因此,在未来的排名中,除了考虑参数量外,更多关注点将放在模型的实际应用效果、安全性以及与用户需求的一致性等方面。 #### 行业专用模型崛起 不同于通用的大规模预训练模型,针对特定领域优化过的垂直行业模型将会获得更多重视。特别是在金融、法律等领域,由于其特殊性和高门槛特性,这类定制化的解决方案能够更好地满足专业场景下的复杂要求[^1]。 #### 对齐人类价值观的重要性增加 为了减少潜在风险并提高实用性,研究人员正积极探索如何让AI系统更加贴近人类的价值观和社会伦理准则。通过引入高质量的人类反馈机制来指导模型调整成为一种有效手段,这有助于提升模型的安全性和可靠性。 然而需要注意的是,目前尚无法提供具体的2025大模型排行榜单详情,因为这一榜单取决于众多因素的变化与发展速度,包括但不限于技术创新的速度、市场需求导向等不可控变量的影响。 ```python # Python代码示例用于模拟构建一个简单的时间序列预测函数 import numpy as np from sklearn.linear_model import LinearRegression def predict_ranking(years, rankings): """ 使用线性回归方法对未来某一份的排名情况进行粗略估计 :param years: 已知历史度列表 :type years: list[int] :param rankings: 各个对应的排名位置 :type rankings: list[float] :return: 预测得到的目标份排名值 :rtype: float """ X = np.array(years).reshape((-1, 1)) y = np.array(rankings) model = LinearRegression() model.fit(X, y) target_year = [[2025]] predicted_ranking = model.predict(target_year)[0] return round(predicted_ranking, 2) years_data = [2020, 2021, 2022, 2023] rankings_data = [5, 4, 3, 2] # 假设这是过去四某个模型的排名情况 print(f"Predicted Ranking for 2025: {predict_ranking(years_data, rankings_data)}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值