Johnsen-lindenstrauss定理(J-L定理)

前言

J-L定理是我在阅读关于汉明嵌入的文章时遇到最多的一次概念,其主要是说“一个 d 维空间中的n个点可以近似等距地嵌入到一个 kO(logn) 维的空间”,所谓近似等距意思简单地理解就是保持任何两个点之间的相对远近关系,准确但不确切的说法是拓扑同构。该定理是1984年发现的,在压缩感知、流行学习和降维上被应用。ps:应该是个很牛逼的定理。

J-L定理

表述

对任意常数 0<ε<1 和任意正整数 n , 设k为一个正整数

k4(ϵ2/2ϵ3/3)1lnn

那么对于任意 Rd 空间中的 n 个点构成的集合V,始终存在一个映射f:RdRk使u,vV,
(1ϵ)uv2f(u)f(v)2(1+ϵ)uv2.

且该映射可以在多项式时间内找到。

从上述定理的表述中可以发现:
1.所使用的距离是低维空间中常用的欧氏距离。
2.原始空间中的点数充分决定了降维后空间可以达到的最小维数。
3.不管空间维数,假设原始空间有100万个点,可降维后的空间维数与 ε 的关系如下,当取ε=0.5,可以嵌入的最低维空间为664维。
这里写图片描述
4.降维时若要求保持等距关系越严格,则 ε 应该越小,但是降维后的空间最低维数也会越大,这中间应该有个权衡(trade-off)。
5. J-L定理给出了低维空间嵌入的误差上界,但这种误差是相对误差。因为以下两个式子等价的。

(1ϵ)uv2f(u)f(v)2(1+ϵ)uv2.

(f(u)f(v)2uv2)uv2ϵ.

关于其证明,网上答案很多,此处就省了,只求会灵活运用就好。

映射

如何找到那个映射函数 f 是我们最为关心的,原始论文中给出了一个随机投影的方法,如下:
k×dARdk

vRdAdkdkAvRk

乘以系数 dkE[dkAv2]=v2.

看到这个映射的构造方法,让我想起了局部敏感哈希(LSH)~

参考资料:
[1]http://tcs.nju.edu.cn/wiki/index.php/%E9%9A%8F%E6%9C%BA%E7%AE%97%E6%B3%95_(Fall_2011)/Johnson-Lindenstrauss_Theorem
[2]https://www.douban.com/note/162173024/

  • 0
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值