学习背景介绍
机器学习是一门很重要的课程,本人的研究方向是AI for science,因此具备一定的jAI基础很重要。有人和我推荐李宏毅老师的课程,很有趣且适合下饭,因此准备利用周末的时间一探究竟。一起学习吧~
b站大学课程链接:https://www.bilibili.com/video/BV1Wv411h7kN/?vd_source=ff59141e8f09beb385c3f645ea950421
一、我的学习目标是什么?
喜欢这个老师的课是因为他的课可以很快听完,且有大量的练习,这就对于有零零碎碎的知识点,但是希望有整理框架能够和别人零gap交流的人来说很使用。并且我喜欢这种轻松快乐的上课风格。
因此,我希望在学习结束后,能够生成一个框架感,以及有几个能很熟的经典例子。
学学学,抓紧碎片时间学习起来!
二、课程笔记
仅记录笔者觉得讲得非常巧妙,豁然开朗的部分。详细的内容在李老师的CSDN上:https://blog.csdn.net/zzh516451964zzh/article/details/123212671
P1 课程会涉及的我感兴趣的内容
-
机器学习就是找一个函数,只不过我们希望机器写得是人写不了的函数。深度学习,Deep learning使用类神经网络进行学习,这个类神经网络就是函数式。
-
Supervised Learning:有分类有对象的标注过的数据
Unsupervised Learning: 不知道如何标注数据的时候 -
Pre-train:训练前希望机器懂得的东西。像是武术前的基本功
Self-supervised learning:机器通过自己的学习,练习基本功
Pre-trained model: foundation model 经过预训练模型 -
Reinforcement Learning
不知道如何标注数据,但是知道什么是成功/不成功,适合使用reinforcement learning. -
异常检测
-
Explainable AI 可解释性AI
让机器解释自己为什么会给出超人类的判断,为什么某些部分是正确的/重要的。以及更重要的,判断依据是否合理,是否我们的实验进入了假的/不合理的判断。 -
Model Attack 信息攻击
-
Domain Adaptation
-
life-long learning
-
Meta Learning 从过去的学习经验中,学习新的运算法
few-shot learning
对于MAE,MSE,cross entropy的补充
- 对于MAE,MSE,cross-entropy
- 使用MAE时,关注误差的绝对大小而不是方向,对异常值不敏感。
- 使用MSE时,关注较大误差,对较大误差给予更高的惩罚。
- 使用交叉熵时,用于分类问题,衡量模型预测和真实标签的差异,优化模型参数。cross-entropy用在和概率有关的部分。
学习过程中想不起来知识点就看这些
- 数学:微积分,线性代数,概率论
- 代码:会Python, numpy, matplotlib 能在GoogeColab上使用就行,所有课程的内容都基于GoogleColab, 非常方便。
- 主讲deep learning, 也会更多的讲到最近最新的技术。
总结
了解了老师上课的框架,准备开始进行对应部分的代码练习+自我思考。