李宏毅老师机器学习课程跟学跟练

博主因研究方向需要具备AI基础,选择李宏毅老师的机器学习课程学习。课程涉及监督学习、无监督学习、强化学习等内容,还补充了MAE、MSE、cross entropy知识。博主学习目标是生成框架感和掌握经典例子,后续将进行代码练习和自我思考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


学习背景介绍

机器学习是一门很重要的课程,本人的研究方向是AI for science,因此具备一定的jAI基础很重要。有人和我推荐李宏毅老师的课程,很有趣且适合下饭,因此准备利用周末的时间一探究竟。一起学习吧~

b站大学课程链接:https://www.bilibili.com/video/BV1Wv411h7kN/?vd_source=ff59141e8f09beb385c3f645ea950421


一、我的学习目标是什么?

喜欢这个老师的课是因为他的课可以很快听完,且有大量的练习,这就对于有零零碎碎的知识点,但是希望有整理框架能够和别人零gap交流的人来说很使用。并且我喜欢这种轻松快乐的上课风格。
因此,我希望在学习结束后,能够生成一个框架感,以及有几个能很熟的经典例子。
学学学,抓紧碎片时间学习起来!

二、课程笔记

仅记录笔者觉得讲得非常巧妙,豁然开朗的部分。详细的内容在李老师的CSDN上:https://blog.csdn.net/zzh516451964zzh/article/details/123212671

P1 课程会涉及的我感兴趣的内容

  1. 机器学习就是找一个函数,只不过我们希望机器写得是人写不了的函数。深度学习,Deep learning使用类神经网络进行学习,这个类神经网络就是函数式。

  2. Supervised Learning:有分类有对象的标注过的数据
    Unsupervised Learning: 不知道如何标注数据的时候

  3. Pre-train:训练前希望机器懂得的东西。像是武术前的基本功
    Self-supervised learning:机器通过自己的学习,练习基本功
    Pre-trained model: foundation model 经过预训练模型

  4. Reinforcement Learning
    不知道如何标注数据,但是知道什么是成功/不成功,适合使用reinforcement learning.

  5. 异常检测

  6. Explainable AI 可解释性AI
    让机器解释自己为什么会给出超人类的判断,为什么某些部分是正确的/重要的。以及更重要的,判断依据是否合理,是否我们的实验进入了假的/不合理的判断。

  7. Model Attack 信息攻击

  8. Domain Adaptation

  9. life-long learning

  10. Meta Learning 从过去的学习经验中,学习新的运算法
    few-shot learning

对于MAE,MSE,cross entropy的补充

  1. 对于MAE,MSE,cross-entropy
  • 使用MAE时,关注误差的绝对大小而不是方向,对异常值不敏感。
  • 使用MSE时,关注较大误差,对较大误差给予更高的惩罚。
  • 使用交叉熵时,用于分类问题,衡量模型预测和真实标签的差异,优化模型参数。cross-entropy用在和概率有关的部分。

学习过程中想不起来知识点就看这些

  1. 数学:微积分,线性代数,概率论
  2. 代码:会Python, numpy, matplotlib 能在GoogeColab上使用就行,所有课程的内容都基于GoogleColab, 非常方便。
  3. 主讲deep learning, 也会更多的讲到最近最新的技术。

总结

了解了老师上课的框架,准备开始进行对应部分的代码练习+自我思考。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值