计算机视觉课程第十三讲-OpenCV的整体框架介绍下半部分

 本次将主要讲解一下OpenCV的整体框架,这样会更有利于我们学习和运用该开源工具。OpenCV主要包含以下三部分:

1、opencv-主要分支,包含核心类型和函数,稳定的算法,构建的脚本和工具;

2、opencv-contribute – 包含实验和不稳定的算法,需要主分支去创建;

3、opencv-extra-包含用于测试的数据以及各项文件;

今天我们将首要说明一下,opencv主要分支中包含的内容:

B站视频链接:https://space.bilibili.com/299713444

alphamat (Alpha Matting 抠图):
计算图像中对象的Alpha蒙版

Aruco(ArUco Marker Detection 二维码检测):

标记板、ChArUco板、检测标记的参数、标记的设置和查询、网格板

barcode(Barcode detection and decoding methods条形码检测与解码方法):

条形码检测与解码方法

bgsegm(Improved Background-Foreground Segmentation Methods 改进的背景-前景分割方法)

基于计数的背景相减、基于GMG算法的背景相减、GSOC算法背景相减、基于局部奇异值分解的二进制模式背景相减、计算局部奇异值分解的二进制描述子、基于高斯混合背景与前景分割、用于测试背景相减算法的合成帧序列生成器;

bioinspired (Biologically inspired vision models and derivated tools受生物启发的视觉模型和衍生工具)

Gipsa/Listic实验模型、Meylan(2007)色调映射算法、视网膜模型参数结构、瞬时事件描述子的参数存储、瞬时/移动区域分割

ccalib(Custom Calibration Pattern for 3D reconstruction 用于三维重建的自定义校准模式)

针孔相机和全向相机的多相机标定、特征点检测以及世界3D对应点

cudaarithm(Operations on Matrices 矩阵运算)

在矩阵上核心操作、单个像素操作、矩阵约化、在矩阵上算法操作

cudabgsegm(Background Segmentation背景分割)

基于混合高斯的背景/前景分割;

cudacodec(Video Encoding/Decoding 视频编码/解码)

CUDA视频编码、视频文件格式信息、视频解复用接口、视频读取和写入接口

cudafeature2d(Feature Detection and Description 特征检测和描述)

匹配关键点描述子、快速特征检测方法、异步2D特征检测器和描述符提取器、ORB特征检测器和描述符提取器

cudafilters(Image Filtering 图像滤波)

常见的所有CUDA滤波接口

cudaimgproc(image Processing 图像处理)

颜色空间处理、直方图计算、霍夫变换、特征检测

cudalegacy(Legacy support 传统支持)

NPPST核心、NPPST图像处理、NPPST信号处理

cudaobjdetect (object detection 目标检测)

用于目标检测的级联分类器、定向梯度直方图目标检测器

cudaoptflow(optical flow 光流)

稀疏光流、稠密光流、Nvidia光流、Gunnar Farneback光流

cudaStereo(stereo correspondence 立体匹配)

联合双边滤波优化视差图、使用BP置信传播计算立体匹配、块匹配计算视差图、用常量空间置信传播算法计算立体匹配、SGM半全局匹配方法视差计算

cudawarping (Image Warping 图像变形)

图像变形

cudev (Device layer 设备层)

数学运算函数、颜色转换

cvv (GUI for Interative Visual Debugging of Computer Vision Programs 计算机视觉程序交互式可视化调试的GUI)

datasets (Framework for working with different datasets 用于处理不同数据集的框架)

动作识别、人脸识别、手势识别、人体姿态估计、图像配准、图像分割、多视图立体匹配、目标识别、行人检测、SLAM、超分、文字识别、跟踪

dnn_objdetect(DNN used for object detection DNN用于目标检测)

模型预测预处理、保存单个边框的信息

dnn_superres(DNN used for super resolution DNN用于超分)

通过卷积神经网络放大图像

dpm(Deformable Part-based Models  基于可形变组件模型)

提供外部用户调用DPM的API

face(Face Analysis 人脸分析)

基本的人脸识别、基于AAM人脸关键点、基于LBF人脸关键点、训练人脸关键点模型、所有人脸识别模型、最小化平均相关能量滤波器,来进行生物特征身份验证、预测结果保存、预测收集器

freetype(Drawing UTF-8 strings with freetype/harfbuzz )

用freetype/harfbuzz绘制UTF-8字符串

fuzzy (Image processing based on fuzzy mathematics 基于模糊数学的图像处理)

F0变换、F1变换、模糊图像处理

hdf (Hierarchical Data Format I/O routines 分层数据格式I/O程序)

hdf5数据格式

hfs (Hierarchical Feature Selection for Efficient Image Segmentation 分层特征选择来有效对图像进行分割)

img_hash (The module brings implementations of different image hashing algorithms 该模块提供不同图像的哈希算法)

输入图像平均哈希、基于块平均图像哈希、基于色彩瞬间图像哈希、基于哈希的Marr-Hildreth哈希、基于Radon变换的图像哈希

intensity_transform (The module brings implementations of intensity transformation algorithms to adjust image contrast 该模块提供用于调整图像对比度的强度变换算法实现)

自动缩放到[0,255]增强图像对比度、使用BIMF方法增加弱光图像、线性对比拉伸增强对比度、幂变换增强对比度、log变换增强对比度

julia (Julia bindings for OpenCV  OpenCV绑定Julia)

line_descriptor(Binary descriptors for lines extracted from an image 从一张图像上提取线条二进制描述符)

检测线和计算二进制描述符、查询数据集、绘制线匹配、LSD检测器

mcc (Macbeth Chart module 图表模块)

Macbeth用于相机颜色校正的图像色块

optflow.(Optical Flow Algorithms 光流算法)

鲁棒局部光流、稀疏到稠密插值、“Dual TV L1”光流、PCA光流算法

ovis (OGRE 3D Visualiser OGRE可视化)

围绕ogre 3D简化渲染包装器

phase_unwrapping (Phase Unwrapping API 相位展开API)

二维相位展开

Plot (Plot function for Mat data Mat数据绘制函数)

quality (Image Quality Analysis (IQA) API 图像质量分析API)

rapid (silhouette based 3D object tracking 基于轮廓的3D目标跟踪)

reg (Image Registration 图像匹配)

两张图像之间建立地图模型、计算一个地图

rgbd (RGB-Depth Processing RGBD处理)

彩色图像计算量化梯度方向模态、计算表面法向量、用线模板匹配做目标检测器

saliency (Saliency API 显著性API)

快速自校正背景相减、目标评估、细粒度显著性、谱残差方法

sfm (Structure From Motion 运动恢复结构)

2D图像到3D重建

shape (Shape Distance and Matching 形状距离与匹配)

仿射变换、基于Chi、EMD、EMD-L1、norm cost提取、形状距离、形状内容描述和匹配算法

stereo (Stereo Correspondance Algorithms 立体匹配算法)

Quasi、BM、SGBM立体匹配、视差图去噪

structured_light(Structured Light API 结构光API)

灰度编码模式、傅里叶变换轮廓术、相位偏移轮廓术、傅里叶辅助相移轮廓术

superres (Super Resolution 超分)

各种光流算法、超分辨算法

surface_matching(Surface Matching 曲面匹配)

ICP、装载和匹配3D模型

text (Scene Text Detection and Recognition 场景文本检测和识别)

tracking (Tracking API 跟踪API)

TLD、CSRT、MIL、Boosting、TLD、KCF、中值光流跟踪、kalamn跟踪

videostab (Video Stabilization 视频稳定)

全局2D运动评估、关键点运动评估、最小化L1和L2运动评估

viz (3D Visualizer 3D可视化)

mesh、相机、鼠标事件

wechat_qrcode (WeChat QR code detector for detecting and parsing QR code 微信二维码检测,用于检测和解析二维码)

xfeatures2d (Extra 2D Features Framework 其它2D特征框架)

Boosted有效二进制局部图像描述子、基于Boosting的描述子学习、DAISY描述子、FREAK描述子、Harris拉普拉斯特征检测器、MSD关键点描述子等

SURF的CUDA版、GMS和LOGOS匹配

ximgproc (Extended Image Processing 图像处理扩展)

快速边缘检测的结构化森林、边缘核、滤波、超像素、图像分割、快速线检测、边缘绘制、傅里叶描述符、run-length编码图像的二进制形态

xobjdetect (Extended object detection 目标检测扩展)

waldBoost检测器

xphoto(Additional photo processing algorithms 其它图像处理算法)

灰度世界白平衡、基于学习的自动白平衡算法、独立拉伸每个输入图像通道到特定范围、图像分为基础层和细节层来进行白平衡

了解更多关于《计算机视觉与图形学》相关知识,请关注公众号:

下载我们视频中代码和相关讲义,请在公众号回复:计算机视觉课程资料

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值