OpenCV框架介绍
概述
OpenCV是一个开放源代码的计算机视觉应用平台,由英特尔公司研发中心俄罗斯团队发起该项目,开源BSD证书,OpenCV的目标是实现实时计算机视觉,,是一个跨平台的计算机视觉库。从开发之日起就得到了迅猛发展,获得了众多公司和业界大牛的鼎力支持与贡献,因为是BSD开源许可,因此可以免费应用在科研和商业应用领域。
历史
OpenCV从立项之日起到现在不过短短的十几年时间,已经席卷整个业界,得到众多著名企业的大力支持,其中包括大名鼎鼎机器人公司Willow Garage与搜索引擎起家的Google。下面几个时间节点对OpenCV发展产生过重要影响:
1999年
OpenCV正式立项,那个时候小编刚刚上大学二年级
2000年
在IEEE计算机视觉与模式识别大会上正式发布了Alpha版本
2001年~2005年
最初五个Beta测试版本发布时间
2006年
正式发布了OpenCV 1.0版本
2008年中,
OpenCV获得了当时还如日中天的机器人公司Willow Garage支持,不幸的是作为机器人业界传奇公司Willow Garage在2014已经倒闭。
2009年
对OpenCV产生重大影响OpenCV2.0正式发布,它的最大的一个变化是添加C++接口,把OpenCV中很多C语言的数据和API进行了优化。目标是建立一个易用、类型安全、新功能,性能更加的版本。官方每六个月发布一次新版本。
2012年
OpenCV正式被非盈利组织OpenCV.org接管、维护用户与开发者社区网站。
核心功能与应用实现
OpenCV中已经包含如下核心功能:
-
二维和三维特征工具箱
-
运动估算
-
人脸识别系统
-
姿势识别
-
人机交互
-
移动机器人
-
运动理解
-
对象鉴别
-
分割与识别
-
立体视觉
-
运动跟踪
-
增强现实(AR技术)
基于上述功能实现需要,OpenCV中还包括以下基于统计学机器学习库:
-
Boosting算法
-
Decision Tree(决策树)学习
-
Gradient Boosting算法
-
EM算法(期望最大化)
-
KNN算法
-
朴素贝叶斯分类
-
人工神经网络
-
随机森林
-
支掌向量机
编程语言:
OpenCV中多数模块是基于C++实现,其中有少部分是基于C语言实现,当前OpenCV提供的SDK已经支持C++、Java、Python等语言应用开发。当前OpenCV本身新开发的算法和模块接口都是基于C++产生。
操作系统支持
OpenCV支持几乎所有主流的OS系统上应用开发。桌面平台:
Windows、
Mac、
Linux、
FreeBSD、
OpenBSD等。
移动平台:
Android、
IOS、
BlackBerray等平台。
用户可以从OpenCV官方获取相关SDK下载,开发文档和环境配置信息。
应用领域
OpenCV自从1.0版本发布以来,立刻吸引许多公司目光,被广泛应用在许多领域的产品研发与创新上,相关应用包括卫星地图与电子地图拼接、医学中图像噪声处理、对象检测、安防监控领域安全与入侵检测、自动监视报警、制造业与工业中的产品质量检测、摄像机标定。军事领域的无人机飞行、无人驾驶与水下机器人等众多领域。
开发者
当前OpenCV随着工业4.0与机器人无人机发展已经在应用领域得到了广泛的应用,当前越来越多从事机器视觉与图像处理的开发者选择OpenCV作为开发工具实现应用开发。OpenCV社区的开发者人数也不断增几何级增加,随着OpenCV开发包支持的语言增加,越来越多Android开发者、Python开发者加入OpenCV学习的阵营。
学习
学习OpenCV,首先是www.opencv.org社区上教程文档与样例代码,API说明文档,如果有能力阅读源代码的话源代码是很好的学习资料。此外小编推荐阅读《Learning OpenCV》的中文版,封面有一只大大的蝴蝶。如果具备以下技能有助更好的学习OpenCV
1.已经有了面向对象语言的基础比如学习过C/C++或者Java就会事半功倍。
2.对图像处理机器学习有基础了解。如果没有推荐阅读劳尔.冈萨雷斯的《数字图像处理》绿皮书。此外有一本程序员写的书《Java数字图像处理-编程技巧与应用实践》讲述了图像处理基础知识与理论浅显易懂。
另外网络上相关的博客文章和教程也是初学者最好的参考。
相似框架
OpenCV是优秀的专业机器视觉开发软件包,常见还包括以下非常专业的机器视觉开发包:
-
Matlab
-
Halcon
-
Sapera
-
VisonPro
-
EVision
虽然这些商业软件对于初级开发者来说更加容易学习和掌握,但是他们都是收费的商业软件、而且商业应用采用时价格昂贵。所以专业的开发人员和机器视觉公司更喜欢OpenCV这样完全开源的开发工具。
OpenCV提供的视觉处理算法非常丰富,并且它部分以C语言编写,加上其开源的特性,处理得当,不需要添加新的外部支持也可以完整的编译链接生成执行程序,所以很多人用它来做算法的移植,OpenCV的代码经过适当改写可以正常的运行在DSP系统和ARM嵌入式系统中,这种移植在大学中经常作为相关专业本科生毕业设计或者研究生课题的选题。