自我运动: 环境中相机的3D运动。在计算机视觉领域,自我运动是指估计相机相对于固定场景的运动。自我估计的一个例子是估计汽车相对于从汽车本身观察到的道路或街道标志线上的移动位置。自我运动的估计在自主机器人导航应用中很重要。
总览
估计相机的自我运动的目的是使用相机拍摄的一系列图像来确定相机在环境中的3D运动。估计环境中摄像机运动的过程涉及在移动摄像机捕获的图像序列上使用视觉测距技术。通常,这是通过特征检测从两个图像帧构建光流来完成的,这些图像帧是从单个摄像机或立体摄像机生成的序列。对每帧使用立体图像对有助于减少误差,并提供更多的深度和比例信息。
在第一帧中检测特征,然后在第二帧中进行匹配。然后,此信息用于为那两个图像中的检测到的特征建立光流场。光流场说明了特征如何从单个点发散,即扩展的焦点。可以从光流场检测扩展焦点,该光流场指示摄像机的运动方向,从而提供摄像机运动的估计。
还有从图像中提取自我运动信息的其他方法,包括避免特征检测和光流场并直接使用图像强度的方法。