多模态3D目标检测论文汇总(前融合+后融合+特征级融合)

点击下方卡片,关注“自动驾驶之心”公众号

ADAS巨卷干货,即可获取

编辑 | 自动驾驶之心

多模态3D感知是自动驾驶感知重要组成部分,也是目前领域研究的热点,非常之重要!能够弥补纯视觉方案的缺点和不足。自动驾驶之心为大家整理了多模态3D目标检测相关论文,希望能够帮助到大家,我们后面将持续保持更新,冲,冲,冲!!!

所有内容出自:国内首个多模态3D目标检测全栈教程(前融合/特征级融合/后融合)

前融合方法

1) PointPainting: Sequential Fusion for 3D Object Detection

论文:PointPainting: Sequential Fusion for 3D Object Detection

2) PointAugmenting: Cross-Modal Augmentation for 3D Object Detection

代码:https://github.com/VISION-SJTU/PointAugmenting

3)Multimodal Virtual Point 3D Detection

论文:https://arxiv.org/pdf/2111.06881.pdf

代码:Multimodal Virtual Point 3D Detection

特征级融合方法

1)EPNet: Enhancing Point Features with Image Semantics for 3D Object Detection

论文:EPNet: Enhancing Point Features with Image Semantics for 3D Object Detection

代码:https://github.com/happinesslz/EPNet

2)EPNet++: Cascade Bi-directional Fusion for Multi-Modal 3D Object Detection

论文:https://arxiv.org/abs/2112.11088

代码:https://github.com/happinesslz/EPNetV2

3)AutoAlign/AutoAlignV2

AutoAlign: Pixel-Instance Feature Aggregation for Multi-Modal 3D Object Detection

论文:https://arxiv.org/abs/2201.06493

AutoAlignV2: Deformable Feature Aggregation for Dynamic Multi-Modal 3D Object Detection

论文:https://arxiv.org/abs/2207.10316

代码:https://github.com/zehuichen123/AutoAlignV2

4)DeepFusion: Lidar-Camera Deep Fusion for Multi-Modal 3D Object Detection

论文:https://arxiv.org/abs/2203.08195

代码:https://github.com/tensorflow/lingvo/tree/master/lingvo/

5)TransFusion: Robust LiDAR-Camera Fusion for 3D Object Detection with Transformers

论文:https://arxiv.org/abs/2203.11496

代码:https://github.com/XuyangBai/TransFusion/

6)DeepInteraction: 3D Object Detection via Modality Interaction

论文:https://arxiv.org/pdf/2208.11112v2.pdf

代码:https://github.com/fudan-zvg/DeepInteraction

7)Cross Modal Transformer: Towards Fast and Robust 3D Object Detection

论文:https://arxiv.org/pdf/2301.01283.pdf

代码:https://github.com/junjie18/CMT

8)SparseFusion: Fusing Multi-Modal Sparse Representations for Multi-Sensor 3D Object Detection

论文:https://arxiv.org/abs/2304.14340

代码:https://github.com/yichen928/SparseFusion

后融合方法

1)CLOCs: Camera-LiDAR Object Candidates Fusion for 3D Object Detection

论文:https://arxiv.org/abs/2009.00784

2)Fast CLOCs

① 全网独家视频课程

BEV感知、毫米波雷达视觉融合、多传感器标定、多传感器融合、多模态3D目标检测、点云3D目标检测、目标跟踪、Occupancy、cuda与TensorRT模型部署、协同感知、语义分割、自动驾驶仿真、传感器部署、决策规划、轨迹预测等多个方向学习视频(扫码学习)

fb16214e1566bde74263c53fca1a67d1.png 视频官网:www.zdjszx.com

② 国内首个自动驾驶学习社区

近2000人的交流社区,涉及30+自动驾驶技术栈学习路线,想要了解更多自动驾驶感知(2D检测、分割、2D/3D车道线、BEV感知、3D目标检测、Occupancy、多传感器融合、多传感器标定、目标跟踪、光流估计)、自动驾驶定位建图(SLAM、高精地图、局部在线地图)、自动驾驶规划控制/轨迹预测等领域技术方案、AI模型部署落地实战、行业动态、岗位发布,欢迎扫描下方二维码,加入自动驾驶之心知识星球,这是一个真正有干货的地方,与领域大佬交流入门、学习、工作、跳槽上的各类难题,日常分享论文+代码+视频,期待交流!

0bdbbb4008716cdaf5407d3a9d789600.png

③【自动驾驶之心】技术交流群

自动驾驶之心是首个自动驾驶开发者社区,聚焦目标检测、语义分割、全景分割、实例分割、关键点检测、车道线、目标跟踪、3D目标检测、BEV感知、多模态感知、Occupancy、多传感器融合、transformer、大模型、点云处理、端到端自动驾驶、SLAM、光流估计、深度估计、轨迹预测、高精地图、NeRF、规划控制、模型部署落地、自动驾驶仿真测试、产品经理、硬件配置、AI求职交流等方向。扫码添加汽车人助理微信邀请入群,备注:学校/公司+方向+昵称(快速入群方式)

f5d89643f766fb3644a3dd8eaf2f78d1.jpeg

### 多模态数据融合学术论文综述 多模态数据融合旨在通过集成来自不同源的数据来提高模型性能和鲁棒性。在推荐系统领域,研究者们已经探索了多种方法来处理多行为模式下的用户交互数据[^1]。 #### 图卷积网络的应用 图卷积网络(GCN)作为一种强大的工具,在多模态数据分析方面表现出色。其能够捕捉节点之间的复杂关系并有效聚合邻居信息,从而实现更精准的特征表示学习。对于包含不同类型边的关系图谱而言,GCNs可以用来建模异构实体间的关联结构,进而促进跨域知识迁移与共享。 #### 数据预处理技术 为了更好地利用多模态输入,通常需要先对其进行标准化转换以及降维操作。常见的做法包括但不限于主成分分析(PCA),线性判别分析(LDA)等统计学手段;或者采用深度神经网络自动提取高层次抽象特性作为后续任务的基础表征形式[^2]。 #### 跨媒体检索框架设计 构建统一语义空间是解决多媒体资源间互操作性的关键所在。具体来说就是将图像、文本乃至音频信号映射到同一个低维度向量空间里去,并在此基础上定义相似度计算准则以便于执行查询匹配工作。近年来基于注意力机制的方法受到了广泛关注,因为它们允许动态调整各部分的重要性权重以适应特定应用场景的需求变化[^3]。 ```python import torch.nn as nn class MultiModalFusion(nn.Module): def __init__(self, input_dim, hidden_dim, output_dim): super(MultiModalFusion, self).__init__() self.fc1 = nn.Linear(input_dim, hidden_dim) self.relu = nn.ReLU() self.fc2 = nn.Linear(hidden_dim, output_dim) def forward(self, x_image, x_text): combined = torch.cat((x_image, x_text), dim=1) out = self.fc1(combined) out = self.relu(out) out = self.fc2(out) return out ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值