多模态3D目标检测论文汇总(前融合+后融合+特征级融合)

点击下方卡片,关注“自动驾驶之心”公众号

ADAS巨卷干货,即可获取

编辑 | 自动驾驶之心

多模态3D感知是自动驾驶感知重要组成部分,也是目前领域研究的热点,非常之重要!能够弥补纯视觉方案的缺点和不足。自动驾驶之心为大家整理了多模态3D目标检测相关论文,希望能够帮助到大家,我们后面将持续保持更新,冲,冲,冲!!!

所有内容出自:国内首个多模态3D目标检测全栈教程(前融合/特征级融合/后融合)

前融合方法

1) PointPainting: Sequential Fusion for 3D Object Detection

论文:PointPainting: Sequential Fusion for 3D Object Detection

2) PointAugmenting: Cross-Modal Augmentation for 3D Object Detection

代码:https://github.com/VISION-SJTU/PointAugmenting

3)Multimodal Virtual Point 3D Detection

论文:https://arxiv.org/pdf/2111.06881.pdf

代码:Multimodal Virtual Point 3D Detection

特征级融合方法

1)EPNet: Enhancing Point Features with Image Semantics for 3D Object Detection

论文:EPNet: Enhancing Point Features with Image Semantics for 3D Object Detection

代码:https://github.com/happinesslz/EPNet

2)EPNet++: Cascade Bi-directional Fusion for Multi-Modal 3D Object Detection

论文:https://arxiv.org/abs/2112.11088

代码:https://github.com/happinesslz/EPNetV2

3)AutoAlign/AutoAlignV2

AutoAlign: Pixel-Instance Feature Aggregation for Multi-Modal 3D Object Detection

论文:https://arxiv.org/abs/2201.06493

AutoAlignV2: Deformable Feature Aggregation for Dynamic Multi-Modal 3D Object Detection

论文:https://arxiv.org/abs/2207.10316

代码:https://github.com/zehuichen123/AutoAlignV2

4)DeepFusion: Lidar-Camera Deep Fusion for Multi-Modal 3D Object Detection

论文:https://arxiv.org/abs/2203.08195

代码:https://github.com/tensorflow/lingvo/tree/master/lingvo/

5)TransFusion: Robust LiDAR-Camera Fusion for 3D Object Detection with Transformers

论文:https://arxiv.org/abs/2203.11496

代码:https://github.com/XuyangBai/TransFusion/

6)DeepInteraction: 3D Object Detection via Modality Interaction

论文:https://arxiv.org/pdf/2208.11112v2.pdf

代码:https://github.com/fudan-zvg/DeepInteraction

7)Cross Modal Transformer: Towards Fast and Robust 3D Object Detection

论文:https://arxiv.org/pdf/2301.01283.pdf

代码:https://github.com/junjie18/CMT

8)SparseFusion: Fusing Multi-Modal Sparse Representations for Multi-Sensor 3D Object Detection

论文:https://arxiv.org/abs/2304.14340

代码:https://github.com/yichen928/SparseFusion

后融合方法

1)CLOCs: Camera-LiDAR Object Candidates Fusion for 3D Object Detection

论文:https://arxiv.org/abs/2009.00784

2)Fast CLOCs

① 全网独家视频课程

BEV感知、毫米波雷达视觉融合、多传感器标定、多传感器融合、多模态3D目标检测、点云3D目标检测、目标跟踪、Occupancy、cuda与TensorRT模型部署、协同感知、语义分割、自动驾驶仿真、传感器部署、决策规划、轨迹预测等多个方向学习视频(扫码学习)

fb16214e1566bde74263c53fca1a67d1.png 视频官网:www.zdjszx.com

② 国内首个自动驾驶学习社区

近2000人的交流社区,涉及30+自动驾驶技术栈学习路线,想要了解更多自动驾驶感知(2D检测、分割、2D/3D车道线、BEV感知、3D目标检测、Occupancy、多传感器融合、多传感器标定、目标跟踪、光流估计)、自动驾驶定位建图(SLAM、高精地图、局部在线地图)、自动驾驶规划控制/轨迹预测等领域技术方案、AI模型部署落地实战、行业动态、岗位发布,欢迎扫描下方二维码,加入自动驾驶之心知识星球,这是一个真正有干货的地方,与领域大佬交流入门、学习、工作、跳槽上的各类难题,日常分享论文+代码+视频,期待交流!

0bdbbb4008716cdaf5407d3a9d789600.png

③【自动驾驶之心】技术交流群

自动驾驶之心是首个自动驾驶开发者社区,聚焦目标检测、语义分割、全景分割、实例分割、关键点检测、车道线、目标跟踪、3D目标检测、BEV感知、多模态感知、Occupancy、多传感器融合、transformer、大模型、点云处理、端到端自动驾驶、SLAM、光流估计、深度估计、轨迹预测、高精地图、NeRF、规划控制、模型部署落地、自动驾驶仿真测试、产品经理、硬件配置、AI求职交流等方向。扫码添加汽车人助理微信邀请入群,备注:学校/公司+方向+昵称(快速入群方式)

f5d89643f766fb3644a3dd8eaf2f78d1.jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值