多模态3D再进化!DeepInteraction++:融合感知算法新SOTA(复旦)

点击下方卡片,关注“自动驾驶之心”公众号

戳我-> 领取自动驾驶近15个方向学习路线

今天自动驾驶之心为大家分享复旦大学最新的多模态3D检测工作—DeepInteraction!如果您有相关工作需要分享,请在文末联系我们!

自动驾驶课程学习与技术交流群事宜,也欢迎添加小助理微信AIDriver004做进一步咨询

>>点击进入→自动驾驶之心多传感器融合技术交流群

论文作者 | Zeyu Yang等

编辑 | 自动驾驶之心

写在前面&笔者的个人理解

目前随着自动驾驶技术的快速发展,安全的自动驾驶车辆需要依赖可靠和准确的场景感知,其中3D目标检测是非常核心的一项任务。自动驾驶中的感知模块通过定位和识别周围3D世界中的决策敏感物体,从而为下游的规控模块做出准确的决策提供保障。

自动驾驶车辆为了输出准确和可靠的感知结果,通常均会配备激光雷达、相机、毫米波雷达以及超声波雷达等多种传感器采集设备。为了增强自动驾驶车辆的感知能力,目前大多数自动驾驶汽车都同时部署了激光雷达和摄像头传感器,分别提供3D点云和RGB图像。由于两种传感器的感知特性不同,它们自然表现出强烈的互补效应。点云涉及必要的目标定位和几何信息,具有稀疏表示的特性,而2D图像则以高分辨率的形式提供丰富的目标外观和语义信息。因此,跨模态的专用信息融合对于强大的场景感知尤为重要。

目前常用的多模态3D目标检测方法通常采用如下图(a)图的融合策略,将各个模态的表示组合成混合的特征。然而,这种融合方法在结构上受到限制,由于信息融合到统一表示的过程中存在很大程度上的不完善,所以可能会丢失很大一部分特定模态的表示信息。

针对上述提到的相关问题,并为了克服上述提到的相关挑战,我们提出了一种新颖的模态交互策略,称之为DeepInteraction++,相关的融合结构如下图的(b)图所示。

c260a9d89470034def8d19d6a4f67d51.png
各类不同的多模态融合感知算法架构对比

我们工作的核心思路是学习和维护多种特定模态的特征表示,而不是得出单一模态的融合表示。我们提出的方法实现了模态间的交互,允许自发交换信息并保留特定模态的信息优势,同时最小化不同模态之间的干扰。具体来说,我们首先使用两个独立的特征提取主干网络,以并行的方式将3D空间的点云数据和2D平面的多视图图像映射到多尺度的LiDAR BEV特征和相机全景特征中。随后,我们使用编码器以双边方式交互异构特征来进行渐进式表示学习和集成。为了充分利用每个模态的特征表达,我们设计了一个解码器以级联方式进行多模态预测交互,以产生更准确的感知结果。大量实验证明了我们提出的DeepInteraction++框架在3D目标检测和端到端自动驾驶任务上均具有卓越的性能。

论文链接:https://www.arxiv.org/pdf/2408.05075

代码链接:https://github.com/fudan-zvg/DeepInteraction

网络模型的整体架构和细节梳理

在详细介绍本文提出的DeepInteraction++算法模型之前,下图整体展示了提出的DeepInteraction++算法模型的网络结构。

9b711c33ad5e2e341ab535b641fab786.png
提出DeepInteraction算法模型的整体框架图

与现有技术相比,本文提出的算法模型在整个检测流程中为激光雷达点云和相机图像模态保留两种不同的特征表示,同时通过多模态的交互策略实现了不同模态信息交换和聚合,而不是创建单一的模态融合表示。通过上图的网络结构可以看出,提出的DeepInteraction++由两个主要模块组成:具有多模态表征交互的编码器模块和具有多模态预测交互的解码器模块。编码器实现模态之间的信息交换和集成,同时通过多模态表征交互保持每个模态的单独场景表达。解码器从单独的模态特定表示中聚合信息,并以统一的模态无关方式迭代细化检测结果。

编码器:实现多模态的表达交互

与通常将多个模态的输入特征聚合到一个混合特征图的传统模态融合策略不同,我们设计的编码器模块采用了多输入多输出的结构,通过多模态表达交互的方式来维护和增强单个模态的特征,其编码器的网络结构如上图中的(a)图所示。整体而言,编码器模块将激光雷达和图像主干独立提取的两个特定模态场景表示特征作为输入,并产生两个精修的特征表达作为输出。具体而言,编码器模块由堆叠多个多模态表征交互编码器层组成。在每一层中,来自不同模态的特征参与多模态表征交互和模态内表征学习,以实现模态间和模态内的交互过程。

双流Transformer的交互编码器模块

在之前DeepInteraction算法模型的基础上,为了进一步推动更高的可扩展性和降低计算开销,我们通过将原始编码器层替换为一对自定义的注意交互机制的Transformer层来实现。此外,多模态表达交互模块中的并行模态内和模态间表征学习现在用作重构架构中的自注意和交叉注意操作。这里,我们以激光雷达分支为例,每个Transformer层内的计算可以表示为如下的情况:

其中公式中的FFN表示前馈网络层,LN表示层归一化,SA和CA分别为表示多模表达交互和模态内表征学习。图像分支中的Transformer 层遵循类似的设计。

多模态表达交互

以相机全景特征表达以及激光雷达BEV表达作为两种模态的输入,我们的多模态表达交互用于实现以双边的方式交换临近上下文的信息,具体实现过程如下。

为了定义跨模态之间的邻接关系,我们首先需要建立激光雷达BEV特征表达和相机全景特征表达之间的像素到像素的对应关系。为此,我们在图像坐标系和BEV坐标系之间构建密集映射( 和)。

再确定了跨模态的邻接关系之后,我们采用注意机制来实现跨模态信息的交换过程。具体而言,给定一张图片作为查询,它的跨模态邻域用于交叉注意力机制中的键和值,其表示方式如下:

其中代表的是在2D表达中位置的元素,是激光雷达到图像表达交互,实现使用激光雷达的点云信息增强图像特征图。同样反过来,给定一个激光雷达BEV特征点作为查询,我们获取它的跨模态领域作为查询。同样采用上述的计算流程用于实现图像到激光雷达的表达交互。

为了促进稀疏激光雷达点云和密集图像模态之间的表征交互,我们需要进行有效的跨模态表征增强。我们引入了一种新的交互机制,即利用激光雷达引导的图像列和BEV极射线之间的跨平面注意力机制,从而实现有效地利用表征交互中的密集图像特征。具体而言,对于每个相机,我们首先转换到极坐标进而得到,其中是图像特征的宽度,是半径的维度。一旦相机参数固定,两个序列元素之间的对应关系将变得更加稳定且更容易学习。我们利用多头注意力和正弦位置编码来捕捉这种模式

模态内表征学习

除了直接合并来自异构模态的信息之外,模态内推理还有助于更全面地整合这些表征。因此,在编码器的每一层中,我们进行与多模态交互互补的模态内表征学习。在本文中,我们利用可变形注意力进行模态内表征学习。同时,考虑到透视投影引入的尺度差异,相比于固定局部邻域内的交叉注意力,具有更灵活感受野的交互操作更为合理,从而在保持原有高效局部计算的同时,实现了更灵活的感受野,并促进了多尺度的信息交互。

分组稀疏注意力实现高效交互

考虑到激光雷达点云固有的稀疏性,激光雷达点的数量在Pillar内会根据其位置而变化,并且单个Pillar内的点最多只能被两个摄像头看到。因此,为了在图像到激光雷达的表示交互期间充分利用GPU的并行计算能力,我们仔细检查每个Pillar中有效图像标记数量的分布,并将这些Pillar划分为几个区间,然后,我们通过将键和值的数量填充到间隔的上限来批量处理每个间隔内的支柱,以进行注意力计算。通过仔细选择间隔边界,可显著减少内存消耗,而对并行性的影响可忽略不计。

解码器:多模态预测交互

除了考虑表示层面的多模态交互之外,我们还引入了具有多模态预测交互的解码器来进行预测,其网络结构如下图所示。

6db1f958999d6b4fffd61bd10c9edb46.png
多模态预测交互模块网络结构图

通过上图的(a)图可以看出,我们的核心思想是增强一种模态在另一种模态条件下的3D目标检测。具体来说,解码器是通过堆叠多个多模态预测交互层来构建的,其中部署预测交互以通过交替聚合来自增强图像表示和增强BEV表示的信息来逐步细化预测过程。

端到端的自动驾驶

为了进一步证明我们提出的DeepInteraction++的可扩展性和优越性,我们将DeepInteraction++扩展为端到端多任务框架,同时解决场景感知、运动预测和规划任务。具体而言,在使用了现有的检测头之外,我们还使用了额外的任务头来形成端到端框架,包括用于地图分割的分割头、用于估计被检测物体运动状态的预测头和用于为自我车辆提供最终行动计划的规划头。考虑到来自BEV和周围视图的特征图用于深度交互式解码,我们做了一些修改以利用这一优势。首先,与激光雷达点云相比,图像上下文对于地图表示更具辨别性,而大量的点云信息可能会反过来造成混淆。因此,我们通过LSS将周围视图特征投影到BEV上,然后将它们传播到地图分割头中。随后,预测和规划头将检测和分割生成的结果作为输入,并使用标准Transformer解码器对其进行处理,从而实现端到端的自动驾驶任务。

实验

为了验证我们提出算法模型的有效性,我们在nuScenes的验证集和测试集上与其它SOTA算法模型进行了对比,相关的实验结果如下图所示。

ccab257fb71b1815841fa2f78d02c0da.png
不同算法模型在nuScenes数据集上的精度对比

通过上述的实验结果可以看出,我们提出的DeepInteraction++算法模型实现了SOTA的感知性能。此外,为了进一步直观的展现我们提出算法模型的效果,我们将模型的检测结果进行了可视化,如下图所示。

da16ab174fbe9aaacc4cb5f73d8c3789.png
算法模型的可视化结果

此外,为了展现我们提出的DeepInteraction++框架在端到端任务上的性能,我们也在nuScenes的验证集上比较了SOTA算法模型的端到端的规划性能,具体的性能指标如下图所示。

cb70ccbf07b1862c95097630f0c31e6c.png
不同算法模型的planning性能

上述的实验结果表明我们提出的算法框架在大多数评估指标上显著超越了现有的面向规划的方法。除了提供更准确的规划轨迹外,DeepInteraction++ 还可以通过对交通参与者进行更精确、更全面的感知和预测来实现更低的碰撞率。为了更加直观的展现我们模型的planning性能,我们也将相关的结果进行了可视化,如下图所示。

9e5a3638a52385ef6eb5682e6abfc230.png
端到端planning任务的性能对比情况

通过上图的可视化结果可以看出,通过整合多模态信息并采用有意义的融合策略,我们提出的方法可以全面理解和分析驾驶场景,从而即使在复杂而错综复杂的驾驶环境中也能做出更合理的规划行为。此外,由于上游的精准感知,DeepInteraction++能够有效避免因累积误差而导致的错误动作,如上图中的第三行所示。

结论

在本文中,我们提出了一种新颖的多模态交互方法DeepInteraction++,用于探索自动驾驶任务中内在的多模态互补性及其各自模态的特性。大量的实验结果表明,我们提出的方法在nuScenes数据集上的3D目标检测以及端到端任务上取得了最先进的性能。

参考

[1] DeepInteraction++: Multi-Modality Interaction for Autonomous Driving

投稿作者为『自动驾驶之心知识星球』特邀嘉宾,欢迎加入交流!重磅,自动驾驶之心科研论文辅导来啦,申博、CCF系列、SCI、EI、毕业论文、比赛辅导等多个方向,欢迎联系我们!

a886fddd020030d0606256bf061b4ded.jpeg

① 全网独家视频课程

BEV感知、BEV模型部署、BEV目标跟踪、毫米波雷达视觉融合多传感器标定多传感器融合多模态3D目标检测车道线检测轨迹预测在线高精地图世界模型点云3D目标检测目标跟踪Occupancy、cuda与TensorRT模型部署大模型与自动驾驶Nerf语义分割自动驾驶仿真、传感器部署、决策规划、轨迹预测等多个方向学习视频(扫码即可学习

a64c776c286f46f887bbff447db16959.png 网页端官网:www.zdjszx.com

② 国内首个自动驾驶学习社区

国内最大最专业,近3000人的交流社区,已得到大多数自动驾驶公司的认可!涉及30+自动驾驶技术栈学习路线,从0到一带你入门自动驾驶感知2D/3D检测、语义分割、车道线、BEV感知、Occupancy、多传感器融合、多传感器标定、目标跟踪)、自动驾驶定位建图SLAM、高精地图、局部在线地图)、自动驾驶规划控制/轨迹预测等领域技术方案大模型、端到端等,更有行业动态和岗位发布!欢迎扫描下方二维码,加入自动驾驶之心知识星球,这是一个真正有干货的地方,与领域大佬交流入门、学习、工作、跳槽上的各类难题,日常分享论文+代码+视频

e8c04bc7d42039ab36a56cd03197b84f.png

③【自动驾驶之心】技术交流群

自动驾驶之心是首个自动驾驶开发者社区,聚焦感知、定位、融合、规控、标定、端到端、仿真、产品经理、自动驾驶开发、自动标注与数据闭环多个方向,目前近60+技术交流群,欢迎加入!扫码添加汽车人助理微信邀请入群,备注:学校/公司+方向+昵称(快速入群方式)

65a7791dea185836f1736412e1d0d96f.jpeg

④【自动驾驶之心】全平台矩阵

95f0dcf3592886c1457986cd42f0a1fe.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值