出发下一站!上岸自动驾驶多模态LLM Agent

今年6月清华、上海AI lab、西工大、浙大和中国电讯的论文将大语言模型 (LLM) 的推理能力应用于具身任务,实现具身多智体协作的高效LLM落地。现在入局自动驾驶正当时!

b7cae9cb17f1540dd547663cf0c0dc6d.gif

LLM-Agents可以说是为自动驾驶研究工作开辟了新道路,LLM Multi-Agent结合自动驾驶将成为2025年研究热点!因此研梦非凡于12月20日晚(周五)邀请了从事多模态大模型研究的王导师,为大家独家讲解《大模型的下一站:LLM-Multi Agent(AI前沿直播课NO.88),主要讲解ACL'24的前沿研究。

LLMs的行业热点及顶会热门方向入手,到多智能体的创新点和相关工作详解重点讲解多智能体算法框架、实验要点,并具体演示代码。(文末查看5位导师现有课题)

👇🏻扫描二维码找助教0元预约直播课!

aecf5785c36ff1d36d7ea8cf56fa4b65.png

凡预约即可免费领取200余篇相关论文(40篇LLM-Multi Agent与自动驾驶结合工作+20篇多智能体+70篇多模态+120篇大模型)

10b36c56ada507345c0542ddb71e6bf9.gif

直播课课程大纲

《WebVoyager: Building an End-to-End Web Agent with Large Multimodal Models》

一、多模态智能体核心根据

行业热点

  • 2025顶会热门方向

  • 大语言模型智能体的应用

  • 多模态大语言模型的迅速发展

二、找创新点

思考研究现状

  • Web操作自动化的研究意义

  • 目前智能体在Web操作上关注什么?

  • 目前Benchmark关注什么?

创新点

  • 提出了一个多模态的Web智能体WebVoyager

  • 提出了一个真实Web世界任务,并引入了一个自动评估协议

三、相关工作详解

  • 大模型智能体应用

  • 智能体在Web操作中的应用

  • 多模态大语言模型

👇🏻扫描二维码找助教0元预约直播课!

cdaae8a274025fc857ae0a43280c8a3a.png

凡预约即可免费领取200余篇相关论文(40篇LLM-Multi Agent与自动驾驶结合工作+20篇多智能体+70篇多模态+120篇大模型)

四、算法框架

  • Browsing Environment

  • Observation Space

  • Action Space

20f726dfca9dfd69ae7b11632a3c5ff6.jpeg

五、实验要点

  • Benchmark for WebVoyager

  • Data Construction

  • Experimental Details

  • Results and Discussion

六、探索

  • WebVoyager Python代码实现

    👇🏻扫描二维码找助教0元预约直播课!

3beb1a5467a6d73d5d7d2fe5d549865e.png

凡预约即可免费领取200余篇相关论文(40篇LLM-Multi Agent与自动驾驶结合工作+20篇多智能体+70篇多模态+120篇大模型)

ba68fdb2635b9e026e1f00ca9264cef3.gif

ps:研梦非凡开设的前沿论文系列直播,旨在帮助大家提升读论文技能,快速抓住重点,掌握有效方法,进而找到创新点,轻松完成论文工作。(下滑查看导师现有课题)

研梦非凡科研论文指导服务

如何快速找到idea,如何正确的选择模型,怎么避免与其他工作重复, 什么样的实验计划省时效果显著,一边实验一边出论文初稿技能,针对不同的期刊会议绘图方法,终稿完善,投稿策略,期刊/会议选择,response,直到accpet!研梦非凡全程陪伴你产出科研成果!

c6d407095dfc19c215469a9f104cb725.jpeg5c8c62ec27e7912f942f5a28141577b7.jpeg

<<< 左右滑动见更多 >>>

如果你需要发CCF A会-C会、SCI一区-四区、EI会议/EI期刊、毕业大论文、毕业设计等,都可以扫码来研梦非凡匹配合适的论文指导服务。

e8bdb158570fe87d66e0baf79af26285.png

研梦非凡导师团队

研梦非凡的导师来自海外QStop50、国内华五、C9、985高校的教授/博士导师/博士后,世界500强公司算法工程师,以及国内外知名人工智能实验室研究员。这是一支实力强大的高学历导师团队,在计算机科学、机器学习、深度学习等领域,积累了丰富的科研经历,研究成果也发表在国际各大顶级会议和期刊上,在指导学员的过程中,全程秉持初心,坚持手把手个性化带教。包括但不限于以下导师~~

我们为自动驾驶方向的同学整理了导师们现有课题及目标会议/期刊区位:

57539b6eaa045c609c1d0259687d207c.jpeg83cf05857d3f78d13755e7f23d2812c3.jpeg2b127f6a597d12e50949132e43ea56ef.jpeg78c8a3634c9474fe7c0286c9abc880f2.jpeg

<<< 左右滑动见更多 >>>

扫码加助教为你匹配合适课题的大牛导师

733969d15961925942b68ee7542ee150.png

我们不是小作坊哦~我们背靠研途考研(就是张雪峰老师和徐涛老师在的那个研途考研),做教育十余年,重交付,重口碑,是我们一贯的公司理念!

6ae3f30e71417eb00e0033e5fe29689c.png

### 多模态大模型在自动驾驶中的应用 #### 环境感知 多模态大模型能够融合来自不同传感器的数据,如摄像头、雷达和激光雷达等,从而构建更加精确的驾驶场景地图。这种能力使得系统可以更全面地理解周围环境,提高对道路、车辆和其他障碍物的识别精度[^4]。 ```python import numpy as np def fuse_sensor_data(camera_data, radar_data, lidar_data): """ 融合多种传感器数据以增强环境感知效果 参数: camera_data (np.array): 来自摄像头的数据 radar_data (np.array): 来自雷达的数据 lidar_data (np.array): 来自激光雷达的数据 返回: fused_data (np.array): 融合后的综合数据表示 """ # 假设这里有一个复杂的算法来处理并融合这些输入源的信息 fused_data = np.concatenate((camera_data, radar_data, lidar_data), axis=0) return fused_data ``` #### 路径规划 基于所获得的地图信息以及设定的目的地点位,多模态大模型可以通过分析交通状况等因素计算出最佳行驶路线。这不仅有助于避开可能存在的危险区域,还能有效减少行程时间,提升整体效率。 ```python from scipy.optimize import linear_sum_assignment def plan_optimal_route(scene_map, destination): """ 根据当前场景图谱及目的地坐标规划最优化路径 参数: scene_map (dict): 当前场景下各要素的位置关系描述字典 destination ((float,float)): 终点坐标的元组形式(x,y) 返回: optimal_path (list[tuple]): 表达由起点至终点之间一系列节点组成的列表 """ cost_matrix = compute_cost_matrix(scene_map, destination) # 计算成本矩阵函数定义省略 row_ind, col_ind = linear_sum_assignment(cost_matrix) optimal_path = [(scene_map['nodes'][i], scene_map['nodes'][j]) for i,j in zip(row_ind,col_ind)] return optimal_path ``` #### 驾驶决策 当面对复杂路况时,比如遇到红绿灯变化或是其他突发情况,多模态大模型可以根据实时收集到的感觉资料做出合理的反应动作——诸如调整速度、改变方向甚至紧急制动等措施,确保行车安全的同时也提高了乘客舒适度。 ```python class DrivingDecisionMaker(object): def __init__(self, model_weights='pretrained_model.h5'): self.model = load_pretrained_model(model_weights) def make_decision(self, perception_info): """ 根据感知层传来的信息作出相应的控制命令 参数: perception_info (dict): 包含但不限于距离前方障碍物的距离、信号灯状态等 返回: action_command (str): 控制指令字符串('accelerate', 'decelerate', ...) """ input_tensor = prepare_input_for_inference(perception_info) # 准备用于推断过程的张量转换逻辑未给出 prediction = self.model.predict(input_tensor)[0] if prediction >= 0.8: action_command = "stop" elif prediction < 0.2: action_command = "go" else: action_command = "slow_down" return action_command ``` #### 人机交互 除了上述功能外,多模态大模型还支持通过语音或手势等方式来进行自然的人车交流互动,使驾驶员能够在不分散注意力的情况下完成某些特定操作,例如设置导航地址或者查询附近的服务设施位置等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值