浅聊小鹏、理想、特斯拉最新智驾架构

作者 | 陈云培 来源 | 智驾最前沿

点击下方卡片,关注“自动驾驶之心”公众号

戳我-> 领取自动驾驶近15个方向学习路线

>>点击进入→自动驾驶之心『自动驾驶』技术交流群

本文只做学术分享,如有侵权,联系删文

小鹏汽车

小鹏汽车的智能驾驶系统(XPILOT)硬件架构非常先进,最新的G9车型搭载了双Nvidia Orin芯片,总算力达508 TOPS,并配备了12个摄像头、5个毫米波雷达、12个超声波雷达以及2颗激光雷达。其中两颗激光雷达作为视觉感知的补盲传感器使用,而非唯一依赖;高分辨率的摄像头使其能够远距离识别场景。

在软件方面,小鹏采用模块化的感知体系并结合端到端的规划网络。XPILOT多年来通过不断迭代积累了大量路测数据,逐步优化感知、地图和决策模块(可以看作“模块化端到端”风格)。小鹏特别强调基于高精地图的NGP(导航引导驾驶)能力。

经过多年的迭代,小鹏已经在高速和城市场景下逐步实现点对点辅助驾驶功能,如在P5等车型测试中,其城市NGP功能的每百公里接管次数已接近高速NGP水平,表明这一技术正在实用化推进。

此外,小鹏G9基于最新的X-EEA 3.0电子电气架构,采用千兆以太网作为通信主干,以支持自动驾驶、智能座舱和OTA升级等功能。总体来看,小鹏的特点是重硬件投入(多模态传感融合、高算力平台)和快速迭代的算法升级,目标在开放道路上实现更多城市驾驶场景的自动化。

理想汽车

理想汽车的智能驾驶技术近年来也有重大突破。其新车型L9首次实现了对外宣称的高速自动驾驶,其硬件配置与小鹏G9相当,搭载双Orin-X芯片(总算力508 TOPS)和禾赛128线激光雷达。

软件架构方面,理想采用了“快慢双系统”策略,使用端到端网络负责低延迟的实时控制(快系统),同时引入视觉语言大模型增强对复杂场景的理解(慢系统)。理想过去一年通过在端到端模型之外叠加VLM,利用大模型来解析语义信息(例如交通标志含义、行人行为推理等),以辅助端到端模型进行决策。该方案在现实计算资源下仍占用了整颗Orin-X算力,双模型的协同效率有待提升。

据报道,理想计划在2025年下半年推出下一代VLA(视觉-语言-动作)端到端大模型,将视觉和语言能力深度耦合,进一步提升模型的多模态推理能力,并有望显著降低人工接管率。理想的应用场景主要以家庭高速游览为主,也在测试城市道路自动辅助驾驶,其特点是注重安全性(大量冗余传感和算力备份)以及逐步向大模型方向发展。

特斯拉

特斯拉作为自动驾驶领域的先锋,目前已几乎完全采用纯视觉架构。其最新硬件(HW4)集成了8个环视摄像头,加上一些毫米波雷达单元(2021年后曾去除,后又部分恢复)以及两个自研FSD芯片,总算力级别也在数百TOPS量级。与前两者不同,特斯拉并不使用激光雷达和高精地图,其规划系统完全依赖基于深度学习的视觉和雷达感知结果。

2023年特斯拉公开的资料显示,其最新FSD 版本采用了端到端的BEV占据网络进行路径规划。该网络从多摄像头拼接出的BEV语义图中直接预测可行驶空间,从而生成车辆轨迹。这种规划方法弱化了对事先道路拓扑的依赖,通过数据驱动的方式学习环境语义,有助于多传感器信息的融合。

特斯拉的应用场景从美国高速公路一路扩展到全球城市街道,其FSD Beta在有限条件下可完成复杂路口及高速匝道等任务。总体而言,特斯拉的特点是End-to-End First,系统设计简化为几层网络联合优化,以大量实车数据驱动模型迭代,不断通过OTA推送来改进驾驶策略,其决策机制完全由神经网络学习实现,黑箱化程度较高。

五一假期全平台星球钜惠!

自动驾驶之心

论文辅导来啦

知识星球交流社区

近4000人的交流社区,近300+自动驾驶公司与科研结构加入!涉及30+自动驾驶技术栈学习路线,从0到一带你入门自动驾驶感知(大模型、端到端自动驾驶、世界模型、仿真闭环、3D检测、车道线、BEV感知、Occupancy、多传感器融合、多传感器标定、目标跟踪)、自动驾驶定位建图(SLAM、高精地图、局部在线地图)、自动驾驶规划控制/轨迹预测等领域技术方案、大模型,更有行业动态和岗位发布!欢迎加入。

独家专业课程

端到端自动驾驶大模型、VLA、仿真测试、自动驾驶C++、BEV感知、BEV模型部署、BEV目标跟踪、毫米波雷达视觉融合、多传感器标定、多传感器融合、多模态3D目标检测、车道线检测、轨迹预测、在线高精地图、世界模型、点云3D目标检测、目标跟踪、Occupancy、CUDA与TensorRT模型部署、大模型与自动驾驶、NeRF、语义分割、自动驾驶仿真、传感器部署、决策规划、轨迹预测等多个方向学习视频

学习官网:www.zdjszx.com

内容概要:本文《2025年全球AI Coding市场洞察研究报告》由亿欧智库发布,深入分析了AI编程工具的市场现状和发展趋势。报告指出,AI编程工具在2024年进入爆发式增长阶段,成为软件开发领域的重要趋势。AI编程工具不仅简化了代码生成、调试到项目构建等环节,还推动编程方式从人工编码向“人机协同”模式转变。报告详细评估了主流AI编程工具的表现,探讨了其商业模式、市场潜力及未来发展方向。特别提到AI Agent技术的发展,使得AI编程工具从辅助型向自主型跃迁,提升了任务执行的智能化和全面性。报告还分析了AI编程工具在不同行业和用户群体中的应用,强调了其在提高开发效率、减少重复工作和错误修复方面的显著效果。最后,报告预测2025年AI编程工具将在精准化和垂直化上进一步深化,推动软件开发行业进入“人机共融”的新阶段。 适合人群:具备一定编程基础,尤其是对AI编程工具有兴趣的研发人员、企业开发团队及非技术人员。 使用场景及目标:①了解AI编程工具的市场现状和发展趋势;②评估主流AI编程工具的性能和应用场景;③探索AI编程工具在不同行业中的具体应用,如互联网、金融、游戏等;④掌握AI编程工具的商业模式和盈利空间,为企业决策提供参考。 其他说明:报告基于亿欧智库的专业研究和市场调研,提供了详尽的数据支持和前瞻性洞察。报告不仅适用于技术从业者,也适合企业管理者和政策制定者,帮助他们在技术和商业决策中更好地理解AI编程工具的价值和潜力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值