基于Pytorch的神经网络之Regression

本文详细介绍了如何使用Python的PyTorch库搭建并训练一个简单的神经网络,以拟合三次函数数据,通过Adam优化器和MSE损失函数演示了从数据准备到训练过程。代码展示了关键步骤,包括网络结构定义、训练迭代和结果可视化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1.引言

2.神经网络搭建

2.1 准备工作

2.2 搭建网络

2.3 训练网络

3.效果

4. 完整代码


1.引言

我们之前已经介绍了神经网络的基本知识,神经网络的主要作用就是预测与分类,现在让我们来搭建第一个用于拟合回归的神经网络吧。

2.神经网络搭建

2.1 准备工作

要搭建拟合神经网络并绘图我们需要使用python的几个库。

import torch
import torch.nn.functional as F
import matplotlib.pyplot as plt

x = torch.unsqueeze(torch.linspace(-5, 5, 100), dim=1)
y = x.pow(3) + 0.2 * torch.rand(x.size())

 既然是拟合,我们当然需要一些数据啦,我选取了在区间 [-5,5] 内的100个等间距点,并将它们排列成三次函数的图像。

2.2 搭建网络

我们定义一个类,继承了封装在torch中的一个模块,我们先分别确定输入层、隐藏层、输出层的神经元数目,继承父类后再使用torch中的.nn.Linear()函数进行输入层到隐藏层的线性变换,隐藏层也进行线性变换后传入输出层predict,接下来定义前向传播的函数forward(),使用relu()作为激活函数,最后输出predict()结果即可。

class Net(torch.nn.Module):
    def __init__(self, n_feature, n_hidden, n_output):
        super(Net, self).__init__()
        self.hidden = torch.nn.Linear(n_feature, n_hidden)
        self.predict = torch.nn.Linear(n_hidden, n_output)

    def forward(self, x):
        x = F.relu(self.hidden(x))
        return self.predict(x)


net = Net(1, 20, 1)
print(net)
optimizer = torch.optim.Adam(net.parameters(), lr=0.2)
loss_func = torch.nn.MSELoss()

网络的框架搭建完了,然后我们传入三层对应的神经元数目再定义优化器,这里我选取了Adam而随机梯度下降(SGD),因为它是SGD的优化版本,效果在大部分情况下比SGD好,我们要传入这个神经网络的参数(parameters),并定义学习率(learning rate),学习率通常选取小于1的数,需要凭借经验并不断调试。最后我们选取均方差法(MSE)来计算损失(loss)。

2.3 训练网络

接下来我们要对我们搭建好的神经网络进行训练,我训练了2000轮(epoch),先更新结果prediction再计算损失,接着清零梯度,然后根据loss反向传播(backward),最后进行优化,找出最优的拟合曲线。

for t in range(2000):
    prediction = net(x)
    loss = loss_func(prediction, y)
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

3.效果

使用如下绘图的代码展示效果。

for t in range(2000):
    prediction = net(x)
    loss = loss_func(prediction, y)
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
    if t % 5 == 0:
        plt.cla()
        plt.scatter(x.data.numpy(), y.data.numpy(), s=10)
        plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=2)
        plt.text(2, -100, 'Loss=%.4f' % loss.data.numpy(), fontdict={'size': 10, 'color': 'red'})
        plt.pause(0.1)
plt.ioff()
plt.show()

                 

最后的结果: 

 

4. 完整代码

import torch
import torch.nn.functional as F
import matplotlib.pyplot as plt

x = torch.unsqueeze(torch.linspace(-5, 5, 100), dim=1)
y = x.pow(3) + 0.2 * torch.rand(x.size())
class Net(torch.nn.Module):
    def __init__(self, n_feature, n_hidden, n_output):
        super(Net, self).__init__()
        self.hidden = torch.nn.Linear(n_feature, n_hidden)
        self.predict = torch.nn.Linear(n_hidden, n_output)

    def forward(self, x):
        x = F.relu(self.hidden(x))
        return self.predict(x)
net = Net(1, 20, 1)
print(net)
optimizer = torch.optim.Adam(net.parameters(), lr=0.2)
loss_func = torch.nn.MSELoss()
plt.ion()
for t in range(2000):
    prediction = net(x)
    loss = loss_func(prediction, y)
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
    if t % 5 == 0:
        plt.cla()
        plt.scatter(x.data.numpy(), y.data.numpy(), s=10)
        plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=2)
        plt.text(2, -100, 'Loss=%.4f' % loss.data.numpy(), fontdict={'size': 10, 'color': 'red'})
        plt.pause(0.1)
plt.ioff()
plt.show()

首先,需要准备好数据集并进行数据预处理。然后,可以使用PyTorch搭建神经网络模型。在回归预测中,通常使用均方误差(MSE)作为损失函数,使用梯度下降法或其变种算法进行优化。最后,可以通过对测试集进行预测来评估模型的性能。 下面是一个简单的PyTorch神经网络回归预测的示例代码: ```python import torch import torch.nn as nn import numpy as np from sklearn.datasets import make_regression from sklearn.preprocessing import StandardScaler # 生成数据集 X, y = make_regression(n_samples=1000, n_features=10, noise=0.1, random_state=1) scaler = StandardScaler() X = scaler.fit_transform(X) # 将数据集转换为Tensor X = torch.from_numpy(X).float() y = torch.from_numpy(y.reshape(-1, 1)).float() # 定义神经网络模型 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.fc1 = nn.Linear(10, 64) self.fc2 = nn.Linear(64, 1) def forward(self, x): x = torch.relu(self.fc1(x)) x = self.fc2(x) return x net = Net() # 定义损失函数和优化器 criterion = nn.MSELoss() optimizer = torch.optim.Adam(net.parameters(), lr=0.001) # 训练模型 for epoch in range(1000): # 前向传播 y_pred = net(X) # 计算损失 loss = criterion(y_pred, y) # 反向传播和优化 optimizer.zero_grad() loss.backward() optimizer.step() # 打印损失 if (epoch+1) % 100 == 0: print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, 1000, loss.item())) # 测试模型 X_test, y_test = make_regression(n_samples=100, n_features=10, noise=0.1, random_state=1) X_test = scaler.transform(X_test) X_test = torch.from_numpy(X_test).float() y_test = torch.from_numpy(y_test.reshape(-1, 1)).float() y_pred_test = net(X_test) test_loss = criterion(y_pred_test, y_test) print('Test Loss: {:.4f}'.format(test_loss.item())) ``` 在上面的代码中,我们使用了一个两层的全连接神经网络模型,使用均方误差作为损失函数,使用Adam优化器进行优化。训练过程中,我们对模型进行了1000次迭代训练,每100次迭代打印一次损失。最后,我们使用测试集对模型进行了评估。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值