欧拉公式-上帝创造的公式

欧拉公式在数学中扮演着重要角色,涉及分式、复变函数、三角形、拓扑学和初等数论等多个领域。公式e^ix=cosx+isinx揭示了指数函数与三角函数的内在联系,并通过e^iπ+1=0展示了e、π、i和1的神奇组合。此外,欧拉公式在三角形中用于外接圆和内切圆的关系,以及在拓扑学中定义了欧拉示性数。在数论中,欧拉φ函数描述了与正整数互素的整数数量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

欧拉公式:

 (1)分式里的欧拉公式:
  a^r/(a-b)(a-c)+b^r/(b-c)(b-a)+c^r/(c-a)(c-b)
  当r=0,1时式子的值为0
  当r=2时值为1
  当r=3时值为a+b+c
  (2)复变函数论里的欧拉公式:
  e^ix=cosx+isinx,e是自然对数的底,i是虚数单位.
  它将三角函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位.
  将公式里的x换成-x,得到:
  e^-ix=cosx-isinx,然后采用两式相加减的方法得到:
  sinx=(e^ix-e^-ix)/(2i),cosx=(e^ix+e^-ix)/2.
  这两个也叫做欧拉公式.将e^ix=cosx+isinx中的x取作∏就得到:
  e^i∏+1=0.
  这个恒等式也叫做欧拉公式,它是数学里最令人着迷的一个公式,它将数学里最重要的几个数学联系到了一起:两个超越数:自然对数的底e,圆周率∏,两个单位:虚数单位i和自然数的单位1,以及数学里常见的0.数学家们评价它是“上帝创造的公式”,我们只能看它而不能理解它.
  (3)三角形中的欧拉公式:
  设R为三角形外接圆半径,r为内切圆半径,d为外心到内心的距离,则:
  d^2=R^2-2Rr
  (4)拓扑学里的欧拉公式:
  V+F-E=X(P),V是多面体P的顶点个数,F是多面体P的面数,E是多面体P的棱的条数,X(P)是多面体P的欧拉示性数.
  如果P可以同胚于一个球面(可以通俗地理解为能吹胀而绷在一个球面上),那么X(P)=2,如果P同胚于一个接有h个环柄的球面,那么X(P)=2-2h.
  X(P)叫做P的欧拉示性数,是拓扑不变量,就是无论再怎么经过拓扑变形也不会改变的量,是拓扑学研究的范围.
  (5)初等数论里的欧拉公式:
  欧拉φ函数:φ(n)是所有小于n的正整数里,和n互素的整数的个数.n是一个正整数.
  欧拉证明了下面这个式子:
  如果n的标准素因子分解式是p1^a1*p2^a2*……*pm^am,其中众pj(j=1,2,……,m)都是素数,而且两两不等.则有
  φ(n)=n(1-1/p1)(1-1/p2)……(1-1/pm)
  利用容斥原理可以证明它.

### Codeforces 887E Problem Solution and Discussion The problem **887E - The Great Game** on Codeforces involves a strategic game between two players who take turns to perform operations under specific rules. To tackle this challenge effectively, understanding both dynamic programming (DP) techniques and bitwise manipulation is crucial. #### Dynamic Programming Approach One effective method to approach this problem utilizes DP with memoization. By defining `dp[i][j]` as the optimal result when starting from state `(i,j)` where `i` represents current position and `j` indicates some status flag related to previous moves: ```cpp #include <bits/stdc++.h> using namespace std; const int MAXN = ...; // Define based on constraints int dp[MAXN][2]; // Function to calculate minimum steps using top-down DP int minSteps(int pos, bool prevMoveType) { if (pos >= N) return 0; if (dp[pos][prevMoveType] != -1) return dp[pos][prevMoveType]; int res = INT_MAX; // Try all possible next positions and update 'res' for (...) { /* Logic here */ } dp[pos][prevMoveType] = res; return res; } ``` This code snippet outlines how one might structure a solution involving recursive calls combined with caching results through an array named `dp`. #### Bitwise Operations Insight Another critical aspect lies within efficiently handling large integers via bitwise operators instead of arithmetic ones whenever applicable. This optimization can significantly reduce computation time especially given tight limits often found in competitive coding challenges like those hosted by platforms such as Codeforces[^1]. For detailed discussions about similar problems or more insights into solving strategies specifically tailored towards contest preparation, visiting forums dedicated to algorithmic contests would be beneficial. Websites associated directly with Codeforces offer rich resources including editorials written after each round which provide comprehensive explanations alongside alternative approaches taken by successful contestants during live events. --related questions-- 1. What are common pitfalls encountered while implementing dynamic programming solutions? 2. How does bit manipulation improve performance in algorithms dealing with integer values? 3. Can you recommend any online communities focused on discussing competitive programming tactics? 4. Are there particular patterns that frequently appear across different levels of difficulty within Codeforces contests?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

江鸟的坚持

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值