数据可视化图表-散点图(Scatter plot)

本文探讨了散点图作为研究两个变量关系的基本图表的重要性。在matplotlib库中,可以方便地创建并以不同颜色区分多个数据组的散点图,以实现更清晰的数据可视化。
摘要由CSDN通过智能技术生成

本文是接着这篇内容的:https://blog.csdn.net/Cassiel60/article/details/88350442

散点图是用于研究两个变量之间关系的经典的和基本的图表。 如果数据中有多个组,则可能需要以不同颜色可视化每个组。 在 matplotlib 中,您可以使用 plt.scatterplot() 方便地执行此操作

#Import dataset
midwest = pd.read_csv("https://raw.githubusercontent.com/selva86/datasets/master/midwest_filter.csv")

# prepare data
#create as many colors as there are unique midwest['category']
categories = np.unique(midwest['category'])
colors = [plt.cm.tab10(i/float(len(categories)-1)) for i in range(len(categories))]

# draw plot for each category
plt.figure(figsize=(16,10),dpi=80,facecolor='w',edgecolor='k')

for i ,category in enumerate(categories):
    plt.scatter('area','poptotal',
               data = midwest.loc[midwest.category==c
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值