(刘二大人)PyTorch深度学习实践-线性模型

1.关于查看损失与w关系的代码实现 

import numpy as np
import matplotlib.pyplot as plt

x_data = [1.0,2.0,3.0]
y_data = [2.0,4.0,6.0]

def forward(x):
    return x*w
def loss(x,y):
    y_pred = forward(x)
    return  (y_pred - y)*(y_pred - y)

w_list = []
mse_list = []

for w in np.arange(0.0,4.1,0.1):
    print('w=',w)
    sum_l = 0
    for x_val,y_val in zip(x_data,y_data):
        y_pred = forward(x_val)
        loss_val = loss(x_val,y_val)
        print('\t',x_val,y_val,y_pred,loss_val)
        sum_l += loss_val
    w_list.append(w)
    mse_list.append(sum_l/3)
    print("MSE:",sum_l/3)

plt.plot(w_list,mse_list)
plt.ylabel('Loss')
plt.xlabel('w')
plt.show()

2.部分结果输出(w=1.6-2.5,当w=2时MSE最小)

w= 1.6
	 1.0 2.0 1.6 0.15999999999999992
	 2.0 4.0 3.2 0.6399999999999997
	 3.0 6.0 4.800000000000001 1.43999999999
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值