量子计算深化:大规模量子计算(相关论文108篇推荐)

基础知识:本文是对量子计算的深化自研博文,需要相当程度的基础知识,请先理解下文:
1. 1. 1.量子计算入门:量子计算机的理解与术语科普
2. 2. 2.量子计算进阶:量子计算机的组建和量子计算原理(包含相关论文推荐60篇)

需要大规模的量子计算机来实现复杂的量子算法。与传统晶体管技术相比,量子器件的结构特性需要更大的物理距离(因为量子态在空间中的物理位置),因此在物理层中需要更大的构建块。因此,在特定的网络结构中,数台较小的量子计算机(微架构)将相互通信,从而实现分布式计算,而不是使用大型量子计算机(宏架构)。由于物理层中用于实现量子纠错的实际模型决定了可能的理论体系结构,因此存在多种设计来实现大规模的量子体系结构。寻找大规模量子计算的通用模型仍然是一个开放的问题。最有前途的方法之一是由拓扑误差修正框架产生的理论架构,进一步的结果见相关著作。
本文中的大量地址是对应参考文献的出处,直接复制后可以进入对应的谷歌学术网站从而研究对应论文。

门模式的量子计算机

在门模型量子计算机中,量子计算是通过多层量子门来完成的。每个量子门对输入量子系统执行幺正操作。由于硬件的限制,例如不可克隆定理,使得一个给定的量子系统不可能同时参与一个以上的量子门,所以门被应用在几个回合中。目前门模型量子计算机(谷歌,MIT)的实际实现是基于具有特定量子比特-量子比特耦合拓扑的量子比特系统,而可实现的电路深度取决于量子门的保真度。
在[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb206]中,作者定义了所谓的量子近似优化算法(Quantum Approximate Optimization Algorithm),这是一种求解组合优化问题的量子算法。根据作者的定义,量子算法输出近似解,其工作机制依赖于一个正整数。正如他们所说的,随着这个正整数的增加,量子算法的近似质量也会提高。根据作者的定义,量子电路由幺正门组成,其局部性不超过目标函数的局部性(其目标是寻找目标函数的最优)。正如作者所示,量子电路的深度在他们的框架内线性增长。作者分析了量子算法在正则图上的性能,并得出结论,它比经典算法有许多优点。在[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb207]中,作者将量子近似优化算法应用于一个有良好定义的组合问题。在所研究的模型中,输入系统是一组线性方程,每个方程恰好包含三个布尔变量,每个方程输出的变量mod 2的和为0或为1。作者表明,他们的量子算法将有效地解决输入问题,并提供了几个额外的优势,比经典算法。在[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb208]中,作者研究了量子霸权的相关性,使用他们的算法,称为量子近似优化算法。正如作者所说,这个算法是设计来运行在门模型量子计算机上。该算法以一个组合优化问题作为输入,输出一个字符串。正如作者所言,这个输出字符串满足最大子句数量的很大一部分。证明了所提出的量子算法对于某些问题具有良好的性能边界。作者还指出,量子算法的输出分布在任何经典器件上都无法得到有效的模拟。通过量子绝热算法进一步验证了这一说法。正如作者总结的那样,所提出的框架可以在近期的量子计算机上运行,并可以用于证明量子霸权。在[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb5]中,作者研究了固定量子比特结构的量子算法理论。该分析基于门模型量子计算机。作者开发了一种不需要纠错和编译的门模型量子计算机编程方法。正如作者总结的一个重要结果,逻辑量子比特的数量将等于设备上的量子比特的数量。提出的方法使用一个参数化的单位序列,坐落在量子比特布局中,产生量子态取决于这些参数。作者还定义了参数优化策略,并研究了所定义算法的性能。研究结果对量子计算机的发展具有重要意义,可以很好地应用于门模型量子比特量子计算机布局。
在[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb19]中开发了一种量子多计算机体系结构。针对Shor分解算法,对量子计算机结构进行了优化。该模型通过大量节点通过量子总线(qubus)进行通信来实现量子多计算机。正如作者所说,选择的主要度量是因数分解过程的性能。正如作者所发现的,量子模求幂步骤代表了量子体系结构发展中的一个计算瓶颈,需要一个解决方案。在工作中提出了许多优化方法,以减少延迟和电路深度。作为工作的最终结论,这些修改使实现一个n位数字的模幂成为可能,延时为 O ( n 2 l o g 2 n ) O (n^2 log^2 n) O(n2log2n) O ( n 2 l o g n ) O (n^2 log^n) O(n2logn),而初始延时为 O ( n 3 ) O(n^3) O(n3)。一些分析表明,提出的量子电路可以比其他现有方法快100多万倍(该研究使用6000位数字进行演示)。
该模型还定义了五种不同的qubus互连拓扑结构,用于构建量子计算机网络。这项工作也定义了不同形式的量子加法器电路。正如作者总结的那样,在量子多计算机结构中的串行链接代表了一个最优的解决方案,因为,正如作者总结的那样,并行链接只会在系统可靠性和性能方面提供非常适度的改进。

分布式拓扑

由于空间中量子态之间的物理距离,大规模的量子计算似乎可以通过分布式拓扑实现。在分布式拓扑中,较小的量子计算机通过量子总线(可通过光纤、无线量子信道等实现)进行通信,量子算法和纠错过程也以分布式方式执行。它不仅需要一个设计良好的基础设施,还需要分布式量子计算、分布式量子应用、量子纠错以及分布式量子控制和测量的协议。实际上,较小的量子计算机是通过特定的系统区域网络(SAN)连接起来的。在SAN模型中,量子计算机可以拥有具有不同量子编码方法的任意量子硬件,这些硬件由一些适当的协议处理和控制(该模型还实现了经典协议)。对于较大的距离,可以构建量子城域网络(Q-MAN)或量子广域网络(Q-WAN)。
在[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb10]中,作者研究了局部和分布式量子计算的模型和方法。本文综述了可扩展量子计算的不同构建方法,并研究了与可扩展量子计算实现相关的实验量子误差修正模型。
在[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb80]中,作者提出了一个设计百万量子比特量子计算机的模型。作者发现,量子计算机组件的大规模集成与量子计算机硬件技术的可靠性之间需要一个适当的平衡。正如作者发现的那样,这种平衡可以通过适当的建模工具进行评估。作者用有限的计算资源在一个现实的量子硬件上模拟了量子逻辑操作的执行,并提供了一个性能模拟。这项工作还展示了通过Shor算法分解1,024位数字的结果,其基线预算为150万个量子比特。作者的结论是,捕获离子量子计算机可以在不到5个月内分解一个2048位整数。
在[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb209]中,作者提出了一个分布式安全量子机器学习模型,该模型允许经典客户端将远程量子机器学习委托给量子服务器。作者定义了一个协议,假设一个远程小规模光子量子计算处理器。由于该方法基于量子力学的基本原理,因此协议是安全的,不会泄露任何相关信息给窃听者。在[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb210]中,作者研究了前馈神经网络的量子泛化。作者利用经典神经元可以推广到具有可逆性的量子情形的基本结果。在这项工作中,作者表明,这些量子网络可以用于将量子态压缩到最小数量的量子比特上,创建一个量子自编码器,也有助于发现量子通信协议,如隐形传态。作者认为,所定义的量子神经元模块自然可以光子实现,因此该模型也可以在实践中实现。在[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb131]中,作者研究了利用量子点实现量子神经网络的可行性。该模型基于偶极子偶极子相互作用。他们发现建议的实施既可行又通用。正如作者所定义的那样,该框架的物理实现使用GaAs基量子点量子比特耦合到声学声子库。作者表明,即使在液氮温度(77 K)下,所定义的神经网络中的量子相干性也能存活100皮秒以上。正如他们得出的结论,这一结果比目前在米利开尔文范围内工作的实现高出三个数量级。

物理实现

目前实现量子计算机的七种量子技术(离子阱、分布式和单片钻石、超导体、线性光学、量子点、给体系统和拓扑量子计算)可分为四代。第一代量子计算机是通过离子阱实现的,物理速度以千赫为单位,逻辑速度以赫兹为单位。这些量子计算机的足迹范围是毫米厘米。第二代量子计算机由分布金刚石[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb60,97,211 216]、超导量子电路[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb1,4,8,42,67,997]和线性光学[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb10,98 118]技术实现。这些量子计算机可以产生MhZ范围的物理速度,其逻辑速度在千赫域中,占用空间大小为毫米厘米。第三代量子计算机基于单片钻石[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb51]、量子点[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb75,77,131 138]或施主[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb10,62,69138 146]技术。它们的物理层速度在GhZ范围内,而逻辑速度在MhZ范围内,占用空间大小在nm m。
第四代量子计算机使用拓扑量子计算技术(也被称为阴离子量子计算)。这些技术目前正在发展中,并在不断发展。第四代的一个重要影响是,不需要主动的量子误差校正,因为系统的发展是为了自然地防止退相干。它允许建立可靠的量子计算在实践中没有专用的量子误差校正。目前第四代实现中的一个开放问题是通过阴离子粒子实现远处点之间的分布式量子计算。
在[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb7]中,作者提出了一种可扩展的量子计算机上的Shor算法。因子分解算法的实际实现已经在不同的量子计算机架构中得到了演示,在此结果之前,算法的一般可扩展性还没有得到解决。作者演示了将数字15分解为7个量子比特和4个缓存量子比特。正如作者所证明的那样,可扩展的Shor算法可以在离子阱量子计算机上实现,成功率为90%。
在[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb217]中,作者提出了一种设计超导通量量子比特的新模型。正如作者所证明的,他们的解决方案提供了宽频率可调谐性,强非谐性,高重现性和弛豫时间超过40微秒在其通量不敏感点。在该框架中,读出谐振腔中通量不敏感点的量子比特失相主要由剩余热光子控制。该结果为通量量子比特在量子电路和量子计算机实现中增强相干性和再现性提供了重新审视。在[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb82]中,作者展示了一种利用离子晶体设计任意尺寸的模块化量子计算机的方法。由于捕获的原子离子对第一代量子计算机的实际发展具有重要的意义,因此从近未来的实际量子计算的角度研究基于离子晶体的解具有至关重要的意义。该方案还研究了离子阱量子比特之间的连接,以及实验量子计算协议等实际实现方面的问题。
在[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb91]中,作者介绍了一个硬件平台来解决将各种量子元素组合成量子计算机的挑战。该方案融合了集成电路制造方法和三维电路量子电动力学(3D cQED)方法。为了研究可扩展的量子计算,作者定义了多层微波集成量子电路(MMIQC)平台。在[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb118]中,作者研究了电控腔结构中的量子点。研究的目标是实现近统一不可分辨性和高亮度纯单光子的同时生成。作者展示了一种按需、明亮和超纯单光子产生的方法。正如他们所发现的那样,这种新一代光源为光学量子操纵的复杂性和可扩展性开辟了一条新道路。
在[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb136]中,提出了一种改进交换耦合半导体量子点操作的模型。作者发现,与在电荷态反交叉附近操作相比,交换操作的灵敏度可以降低,电荷噪声的去相效应也可以显著降低。该模型还允许通过速率来提高性能,因此其结果对快速量子操作特别方便。在[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb75]中,引入了一种可寻址容错量子比特模型,该模型使用了一个天然硅双量子点和一个为快速自旋控制而优化设计的微磁铁。正如作者所发现的那样,该模型导致了高的量子比特保真度(99.6%),这是对天然硅量子比特报道的最高保真度,与同位素纯化的基于硅量子点的量子比特获得的保真度相当。这些结果对于实际量子计算机的实现尤为重要,因为这些结果可以通过当前的设备直接应用。
在[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb139]中,作者展示了一种确定性的、按需生成两量子比特纠缠态的方法。实际的实现是基于电子和嵌入在硅纳米电子器件中的单个磷原子的核自旋。正如作者所发现的那样,通过顺序地读取电子和原子核,产生的纠缠态违反了贝尔/CHSH不等式。他们的模型的扩展还允许实现高保真量子非破坏测量(QND)。正如作者所总结的那样,他们的实验结果代表了对磷原子的两量子比特希尔伯特空间的完全控制。在[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb218]中,作者研究了量子化哈密顿量模拟的方法。如作者所述,对于一个特定的厄米算符,哈密顿模拟问题是在特定的时间以特定的误差逼近时间演化算符。作者揭示了这种哈密顿模拟是可能的,具有良好的特征,最优的查询复杂度。在[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb219]中,作者指出,如果给定一个具有特定密度矩阵的量子系统的多个副本,那么可以在该系统的不同副本之间创建量子相干来执行量子主成分分析。结果表明,这是一种非常方便的量子实验计算结果,因为它比现有的任何算法都能以指数级的速度揭示未知态的大特征值对应的特征向量。关于量子计量学进展的研究,见[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb220]。正如作者所说,量子计量学是对那些量子技术的研究,使人们获得优于纯经典方法的优势。在这项工作中,作者回顾了一些最有希望的最新发展在量子计量。关于将任意量子电路合成为拓扑组装的研究,请参见[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb129]。在这项工作中,作者提出了一种有效生成物理量子电路和量子门实现量子计算机的方法。在[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb221]中,作者研究了量子辅助高斯过程回归方法。理论上,高斯过程是监督机器学习中广泛应用的回归问题模型。作者发现,[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb222]中引入的量子线性系统算法可以应用于高斯过程回归。正如作者总结的那样,在某些情况下,它导致了指数级的计算时间减少,或多项式级的效率增加也是可能的。在[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb223]中,定义了线性回归的量子算法。应用量子算法对给定的数据集用最小二乘法拟合线性回归模型。正如作者所说的,与之前已有的算法产生一个编码最优参数的量子态相反,本文提出的量子算法输出经典值。从模型的特点来看,运行一次即可完全确定拟合模型。

相关论文推荐

文献[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb83]收录了1995年以来关于冷阱离子量子计算的基础研究。有关基本量子逻辑门演示的基本工作,见[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb90]。1998年[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb135]定义了一个带有量子点的量子计算模型。关于硅基核自旋量子计算机的模型和属性,见[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb143]。关于线性光学的高效量子计算方案,见[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb103]。关于单向量子计算机的研究,见[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb224]。在[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb87]中,定义了一种用于大规模离子阱量子计算机的架构。关于全光量子控制的非门的演示,见[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb108]。关于单个被捕获离子的量子动力学性质,见[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb88]。关于分布式量子计算的一些模型,参见2003年的[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb225]。量子力学能否帮助分布式计算?在[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb226]中讨论。关于基于测量的量子计算,见[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb156]。[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb227]提出了一种针对Shor分解算法优化的量子多计算机体系结构。关于原子光学量子计算机容错保理的要求,见[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb228]。
关于光学量子计算主要属性的综述文章见[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb109]。关于基本光子量子技术的综述,见[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb110]。超导量子比特容错体系结构模型[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb93]进行了研究。关于2010年以来量子计算机的主要属性的概述,见[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb104]。关于分布式量子计算的工作我们建议使用半导体纳米光子学架构[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb76]。关于量子纠错的基本原理,参见[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb45]。关于超导电路对量子信息的作用,我们提出[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb92]。在[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb87]中,定义了一种用于大规模离子阱量子计算机的体系结构。[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb201]讨论了大规模量子计算机经典控制的一种方法。有关室温固态量子信息处理器的可伸缩架构的定义,请参阅[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb51]。在[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb60]中,提出了一种超过1秒的室温量子比特存储器。关于具有原子存储器和光子互联的大规模模块化量子计算机体系结构模型,见[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb61]。这项工作还提出了一个具有原子存储器和光子互连的大规模模块化量子计算机架构。关于在纳米电子器件中存储30秒量子信息的实现,见[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb62]。在[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb84]中,作者通过光频量子位的干涉研究了远端原子间的概率量子门问题。t结多区离子阱阵列用于二维离子穿梭、存储和操纵的研究,见[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb85]。在[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb81]中,作者研究了通过x结阱阵列捕获离子量子比特的高保真传输问题。关于非确定性门容错量子计算的讨论,见[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb105]。
关于单掺杂剂在硅中原子精确放置的实验实现,见[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb146]。在[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb138]中,综述了硅量子电子学的性质。在[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb229]中,对量子计算机建设的一些基本问题进行了总结。
在[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb114]中,研究了所谓的弹道通用量子计算问题。关于IBM量子计算机的详细信息,请参见[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb230]。在[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb113]中,定义了一种不破坏状态本身的光子量子比特测量方法。在[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb111]中,研究了硅上硅波导量子电路模型。对于硅量子电子学的研究,我们建议[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb138]。在[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb99]中,对硅量子光子的主要性质进行了研究。[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb86]研究了利用光子和声子的原子量子比特的模纠缠问题。
在[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb97]中提出了超导通量量子比特与金刚石中的电子自旋系综相干耦合的实际实现。研究了用于容错量子计算的超导量子比特的属性。在[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb42]中,提出了一种使用四个超导量子比特组成的正方形晶格的量子错误检测码的演示。在[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb133]中,作者研究了基于光子纳米线中的量子点的高效单光子源。在[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb231]中,作者提出了一种通过有源复用产生单光子的实验方法。关于不可分辨单光子的明亮固态源的讨论,见[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb100]。在[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb107]中,研究了光子的有源时间复用问题。关于损耗对多路单光子光源影响的研究,见[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb98]。
关于钻石在量子计算中的相关性的研究,见[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb112]。关于仅使用线性光学元件进行任意完备bellstate测量的讨论,见[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb101]。关于钻石缺陷单光子的片上操作的工作,见[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb102]。在[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb212]中,证明了金刚石中单缺陷自旋之间的室温纠缠的实际实现。在[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb232]中定义了用于NV-diamond中可扩展量子信息处理的光子体系结构。在[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb233]中,提出了在Fabry Perot腔中研究纳米金刚石的方法。这些结果对于量子计算的实现尤为重要,因为金刚石中带负电荷的氮空位色中心为量子计算提供了一个物理上可实现的平台。
关于使用可控单离子注入的基于电荷的硅量子计算机结构模型的讨论见[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb140]。关于光学光子和固态自旋量子比特之间的量子纠缠的研究,见[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb216]。在[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb214]中,作者研究了单个核自旋的单次读出问题。在[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb215]中,研究了固态自旋量子寄存器的高保真投影读出问题。在[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb116]中,研究了硅光子对光源之间的片内量子干涉。关于硅片上环谐振腔光子对源之间的量子比特纠缠的实际实现,见[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb117]。在[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb137]中,作者研究了硅中的双量子比特逻辑门的实验实现。硅中的单原子电子自旋量子比特的演示见[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb144]。在[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb145]中发现了硅中核自旋量子比特的高保真读出和控制。关于硅中磷供体簇的自旋读出和寻址性的实验模型,见[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb69]。在[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb141]中,作者研究了硅表面编码量子计算机的模型。
[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb142]讨论了基于供体的量子计算的二维架构。在[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb211]中,提出了在间隔3米的固态量子位之间实现预先纠缠的实用方法。在[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb134]中,定义了一种使用量子点进行量子计算的分层架构。具有容错控制保真度的可寻址量子点量子比特模型见[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb77]。在[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb213]中,利用电子自旋间隔1.3 km提出了无孔洞钟不等式违例。
关于非交换任意子与拓扑量子计算的相关性,见综述[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb126]。在[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb119]中,研究了拓扑量子码的快速解码器问题。有关杂化超导体半导体纳米线器件中马约拉纳费米子特征的讨论,见[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb96]。对于在噪声很大且局部错误率接近1%的网络中进行拓扑量子计算的讨论,我们建议使用[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb47]。[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb127]定义了拓扑量子电路的跨层验证模型。文献[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb120]对交换拓扑码解码的容错重整化群进行了研究。[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb128]研究了拓扑量子电路到物理硬件的映射问题。关于majorana零模和拓扑量子计算的讨论,见[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb130]。分析了[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb43]中容错拓扑量子纠错的最小权完美匹配问题。关于拓扑编码量子计算的基本原理,见[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb124]。
在[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb234]中,研究了格点手术的表面码量子计算问题。在[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb235]中,讨论了低开销量子计算的问题。对于量子计算的可编程架构,请参见[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb236]。[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb201]研究了大规模量子计算机的经典控制问题。使用表面码进行量子纠错的容错阈值见[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb50]。在[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb80]中,作者研究了通过资源性能模拟器设计百万量子比特量子计算机的问题。在[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb89]中,作者研究了微波离子阱量子计算机的模型。在[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb237]中,作者研究了容错线性光量子计算的资源成本问题。关于容错高电平量子电路的编译器,请参见[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb205]。
在[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb238]中,为量子计算设计工具定义了一个分层的软件架构。在[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb239]中可以找到一种量子电路简化和电平压缩的方法。关于量子编程语言的调查可以在[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb240]中找到。在[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb241]中,提出了一种可扩展的量子编程语言。[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb242]中提出了用于量子计算的软件设计体系结构和特定领域语言模型。有关用于编程的量子计算库,请参见[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb243]。关于使用固定和飞行量子位的重复直到成功的量子计算模型,见[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb244]。关于分布式离子阱计算机中的可扩展错误纠正问题,见[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb245]。关于基于小量子寄存器的分布式量子计算问题,见[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb246]。捕获离子量子计算的集成光学方法问题在[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb247]中有讨论。为了讨论具有捕获离子的量子网络,我们建议[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb248]。为了在量子计算机上研究量子化学的最新结果,我们建议[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb249]。关于制造自旋的量子退火问题,见[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb250]。关于时间最优量子计算,见[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb251]。关于在小型量子计算机上进行量子化学的门数估计的研究见[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb252]。关于光子量子处理器上的变分本征值解算器的详细信息,见[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb253]。[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb88]研究了单阱离子的量子动力学问题。关于降维制备量子系统热态的问题,见[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb254]。关于在量子计算机上制备投影纠缠对态的方法,见[http://refhub.elsevier.com/S1574-0137(18)30170-9/sb255]。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Chahot

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值