高等数学拾遗

01  Hesse矩阵与多元函数的极值

  • 必要条件:如果函数fx^0\in D^0处取到极值,那么有gradf=0
  • 其中x^0被称做函数的一个稳定点

  • 稳定点
    • 鞍点
      •  fx^0处的Hesse矩阵是不定的

    • 极值点
      • x^0是一个极小值点,那么fx^0处的Hesse矩阵是半正定的
      • x^0是一个极大值点,那么fx^0处的Hesse矩阵是半负定的
      • fx^0处的Hesse矩阵是正定的, x^0是一个严格的极小值点
      • fx^0处的Hesse矩阵是负定的, x^0是一个严格的极大值点

  • Hesse矩阵

    • f(x_{1},x_{2},x_{3},...,x_{n})X^{(0)}点处的泰勒展开式的矩阵形式

      • f(X)=f(X^{(0)})+\bigtriangledown f(X^{0})^{T}\Delta X+\frac{1}{2}\Delta X^{T}G(X^{(0)})\Delta X+...

      • G(X^{(0)})=\begin{bmatrix} \frac{\partial ^{2}f}{\partial x_{1}^2} & \frac{\partial ^{2}f}{\partial x_{1}\partial x_{2}} & \cdots &\frac{\partial ^{2}f}{\partial x_{1}\partial x_{n}} \\ \frac{\partial ^2 f}{\partial x_2\partial x_1} & \frac{\partial ^{2f}}{\partial x_2^2} &\cdots &\frac{\partial ^{2f}}{\partial x_2\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial ^2 f}{\partial x_n\partial x_1} & \frac{\partial ^2f}{\partial x_n\partial x_2} &\cdots & \frac{\partial ^2 f}{\partial x_n^2} \end{bmatrix}\rightarrow Hesse -Matrix

  • Numpy 求矩阵的特征值并做判断

    • import numpy as np
      a = [[1,0,0],[-2,5,-2],[-2,4,-1]]
      c = np.linalg.eig(a)
      eig_values = c[0]
      p = list(c[0])
      positive = 0 
      negative = 0
      null = 0
      
      for i in p:
          if i > 0:
              positive += 1
          elif i == 0"
              null += 1
          elif i < 0:
              negative += 1       
      if negative > 0 and positive > 0:
          print("it is a saddle point")
      elif negative > 0 and positive = 0 and null > 0:
          print("it is a negative semidefinite matrix")
          print("Warning!!cannot judge!!")
      elif negative > 0 and positive = 0 and null = 0:
          print("it is a maximum point")
      elif negative = 0 and positive > 0 and null = 0:
          print("it is a minmum point")
      elif negative = 0 and positive > 0 and null > 0:
          print("it is a positive semidefinite matrix")
          print("Warning!!cannot judge!!")
          
      

02  Leibniz积分法则

  •  莱布尼兹法则的一般形式
    • \frac{d}{dx}(\int_{a(x)}^{b(x)}f(x,t)dt)=f(x,b(x))\frac{d}{d(x)}b(x)-f(x,a(x))\frac{d}{dx}a(x)+\int_{a(x)}^{b(x)}\frac{\partial }{\partial x}f(x,t)dt
    • 特别的,当\begin{pmatrix} a(x)\\ b(x) \end{pmatrix}=\begin{pmatrix} a\\ b \end{pmatrix}
      • \frac{d}{dx}(\int_{a}^{b}f(x,t)dt)=\int_{a}^{b}\frac{\partial }{\partial x}f(x,t)dt

 

03  常用函数的展开 

e^x=\sum_{n=0}^{\infty }\frac{1}{n!}x^n=1+x+\frac{x^2}{2!}+\cdots

\begin{matrix} sin x=\sum_{0}^{\infty }\frac{(-1)^n}{(2n+1)!}x^{2x+1}=x-\frac{1}{3!}x^3+\frac{1}{5!}x^5-\cdots \\ cosx=\sum_{0}^{\infty}\frac{(-1)^n}{(2n)!}x^{2n}=1-\frac{1}{2!}x^2+\frac{1}{4!}x^4-\cdots \\ ln(1+x)=\sum_{n=0}^{\infty}=\frac{(-1)^n}{n+1}x^{n+1}=x-\frac{1}{2}x^2+\frac{1}{3}x^3-\cdots \\ \frac{1}{1-x}=\sum_{n=0}^{\infty}x^n=1+x+x^2+x^3+\cdots \end{matrix}

\begin{matrix} \frac{1}{1+x}=\sum_{n=0}^{\infty}(-1)^nx^n=1-x+x^2-x^3+x^4-\cdots \\ (1+x)^a=1+\sum_{n=0}^{\infty}\frac{a(a-1)\cdots (a-n+1)}{n!}x^n=1+ax+\frac{a(a-1)}{2}x^2+\cdots \\ arctanx=\sum_{n=0}^{\infty}\frac{(-1)^n}{2n+1}x^{2n+1}=x-\frac{1}{3}x^3+\frac{1}{5}x^5+\cdots \\ arcsinx=\sum_{n=0}^{\infty}\frac{(2n)!}{4^n(n!)^2(2n+1)}x^{2n+1}=x+\frac{1}{6}x^3+\frac{3}{40}x^5+\cdots \end{matrix}

\begin{matrix} tanx=\sum_{n=1}^{\infty}\frac{B_{2n}(-4)^n(1-4^n)}{(2n)!}x^{2n-1}=x+\frac{1}{3}x^3+\frac{2}{15}x^5+\cdots \\ secx=\sum_{n=0}^{\infty}\frac{(-1)^nE_{2n}x^{2n}}{(2n)!}=1+\frac{1}{2}x^2+\frac{5}{24}x^4+\cdots \\ cscx=\sum_{n=0}^{\infty}\frac{(-1)^{n+1}2(2^{2n+1}-1)B_{2n}}{(2n)!}x^{2n-1}=\frac{1}{x}+\frac{1}{6}x+\frac{7}{360}x^3+\cdots \\ cotx=\sum_{n=0}^{\infty}\frac{(-1)^n2^{2n}B_{2n}}{(2n)!}x^{2n-1}=\frac{1}{x}-\frac{1}{3}x-\frac{1}{45}x^3-\cdots \end{matrix}

\begin{matrix} shx=\sum_{n=0}^{\infty}\frac{x^{2n+1}}{(2n+1)!}=x+\frac{x^3}{3!}+\cdots \\ chx=\sum_{n=0}^{\infty}\frac{x^{2n}}{(2n)!}=1+\frac{x^2}{2!}+\cdots \\ thx=\sum_{n=1}^{\infty}\frac{2^{2n}(2^{2n}-1)B_{2n}x^{2n-1}}{(2n)!}=x-\frac{1}{3}x^3+\frac{2}{15}x^5-\cdots \\ arshx=\sum_{n=0}^{\infty}\left ( \frac{(-1)^n(2n)!}{2^{2n}(n!)^2} \right )\frac{x^{2n+1}}{(2n+1)}\\ archx=ln2x-\sum_{n=1}^{\infty}\left ( \frac{(-1)^n(2n)!}{2^{2n}(n!)^2} \right )\frac{x^{-2n}}{2n}\\ \end{matrix}

arthx=\sum_{n=0}^{\infty}\frac{x^{2n+1}}{2n+1}

  • B指伯努利数
  • E指欧拉数
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

River Chandler

谢谢,我会更努力学习工作的!!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值