- 表象变换
一维粒子哈密顿量
表象中
的矩阵元
- 态的表象变换
- 不难证明
- 算符的表象变换
- 坐标表象
Non-denumerable basis
- 在坐标表象中动量表示为:
- 坐标在动量表象中表示为:
表象变换
- 表象变换就像坐标变换一样可以微操
波函数的变换
容易证明:
其中:
构成变换矩阵
A表象下的波函数C_a B表象下的波函数D_b
算符的变换
泡利矩阵
- 泡利矩阵是厄米的
- 泡利算符是单位算符
泡利矩阵的对易关系
的分量之间满足反对易条件
- 泡利矩阵的完备性
- 例题
- 自旋1/2的粒子处于态
的变换
求变换矩阵
- 任意态
那么:
那么波函数变换就是:
那么算符变换就是:
习题解答
- 动量表象中角动量
的矩阵元和
的矩阵元
动量算符的本征函数
- 线性谐振子哈密顿量在动量表象中的矩阵元
设已知在和
的共同表象中,算符
和
的矩阵分别为
求它的本征值和归一化的本征函数。最后将矩阵对角化