表象变换与矩阵元--周世勋量子力学第四章习题解答

  • 表象变换

一维粒子哈密顿量H=\frac{p^2}{2m}+V(x)

x表象中x,p,H的矩阵元

(x)_{x'x''}=\left \langle x'| x|x''\right \rangle=\int\delta(x-x')x\delta(x-x'')dx=x'\delta(x'-x'')


  • 态的表象变换

F:<k|\varphi>=a_k;F':<\alpha|\varphi>=a_\alpha

<a|\varphi>=\sum_k<a|k><k|\varphi>=\sum_kS_{\alpha k}a_k

  • 不难证明S^+S=SS^+=I

  • 算符的表象变换

L_{jk}=<j|\hat{L}|k>

  • 坐标表象

<x|p'>=\frac{1}{\sqrt{2\pi\hbar}}exp(ip'/\hbar)


Non-denumerable basis

  1. <x|y>=\delta(x-y)
  2. \hat{x}|x>=x|x>
  3. \hat{x}^\dagger=\hat{x}\Rightarrow <x|\hat{x}=x<x|
  4. \hat{p}^\dagger=\hat{p}\Rightarrow <p|\hat{p}=p<p|
  5. p|x>=\hat{p}<x|=\frac{\hbar}{i}\frac{\partial}{\partial x}<x|
  6. <\phi|\psi>=\int dx<\phi|x><x|\psi>=\int dx \phi^*(x)\psi(x)
  7. <\phi|\hat{x}|\psi>=<\phi|\hat{x}\hat{1}|\psi>=\int dx<\phi|\hat{x}|x><x|\psi>=\int dx <\phi|x>x<x|\psi>=\int dx\phi^*(x)x\psi(x)
  8. <x|p>=\frac{e^{ipx/\hbar}}{\sqrt{2\pi\hbar}}
  9. \frac{1}{2\pi}\int due^{i(p-p')u}=\delta(p-p')

  • 在坐标表象中动量表示为:-i\hbar\frac{\partial }{\partial x}
  • 坐标在动量表象中表示为:i\hbar \frac{\partial }{\partial p}

表象变换

  • 表象变换就像坐标变换一样可以微操

波函数的变换

\begin{matrix} \Psi(t)\rangle=\sum_aC_a(t)|a\rangle=\sum_bD_b(t)|b\rangle\\ (C_a(t)=\langle a|\Psi(t)\rangle;D_b(t)=\langle b|\Psi(t)\rangle) \end{matrix}

容易证明:C_a(t)=\sum_bS_{ab}D_b(t)

其中:S_{ab}=\langle a|b\rangle

S_{ab}构成变换矩阵S

A表象下的波函数C_a B表象下的波函数D_b

C_a=SD_b

算符的变换

F_a=SF_bS^{-1}=SF_bS^+

泡利矩阵

\hat{\sigma_x}=\begin{pmatrix} 0 & 1\\ 1 &0 \end{pmatrix};\hat{\sigma_u}=\begin{pmatrix} 0 & -i\\ i & 0 \end{pmatrix};\hat{\sigma_z}=\begin{pmatrix} 1 & 0\\ 0&-1 \end{pmatrix}

  • 泡利矩阵是厄米的
  • 泡利算符是单位算符

泡利矩阵的对易关系

[\sigma_x,\sigma_y]=2i\sigma_z;[\sigma_y,\sigma_z]=2i\sigma_x;[\sigma_z,\sigma_x]=2i\sigma_y

[\sigma^2,\sigma_x]=[\sigma^2,\sigma_y]=[\sigma^2,\sigma_z]=0

\sigma的分量之间满足反对易条件


  • 泡利矩阵的完备性

  • 例题
    • 自旋1/2的粒子处于态

\langle \sigma_x\rangle = \langle \Omega |\sigma_x|\Omega\rangle=\frac{1}{\sqrt{6}}\begin{pmatrix} 1-i & 2 \end{pmatrix}\begin{pmatrix} 0 & 1\\ 1 &0 \end{pmatrix}\frac{1}{\sqrt{6}}\begin{pmatrix} 1-i\\ 2 \end{pmatrix}=\frac{2}{3}

  • \sigma_x\rightarrow\sigma_z的变换

\Phi_a=\frac{1}{\sqrt{2}}\begin{pmatrix} 1\\ 1 \end{pmatrix},\Phi_b=\frac{1}{\sqrt{2}}\begin{pmatrix} 1\\ -1 \end{pmatrix}

\Psi_a^+=\begin{pmatrix} 1 & 0 \end{pmatrix};\Psi_b^+=\begin{pmatrix} 0 & 1 \end{pmatrix}

求变换矩阵S=\begin{pmatrix} S_{11} &S_{12} \\ S_{21} & S_{22} \end{pmatrix}

S_{11}=\begin{pmatrix} 1 & 0 \end{pmatrix}\frac{1}{\sqrt{2}}\begin{pmatrix} 1\\ 1 \end{pmatrix}=\frac{1}{\sqrt{2}}

S=\frac{1}{\sqrt{2}}\begin{pmatrix} 1 & 1\\ 1& -1 \end{pmatrix}


  • 任意态\begin{pmatrix} u\\ v \end{pmatrix}

\begin{pmatrix} u\\ v \end{pmatrix}=a_1\begin{pmatrix} 1\\ 0 \end{pmatrix}+a_2\begin{pmatrix} 0\\ 1 \end{pmatrix}=\frac{b_1}{\sqrt{2}}\begin{pmatrix} 1\\ 1 \end{pmatrix}+\frac{b_2}{\sqrt{2}}\begin{pmatrix} 1\\ -1 \end{pmatrix}

那么:C_a\equiv \begin{pmatrix} a_1\\ a_2 \end{pmatrix};D_b\equiv \begin{pmatrix} b_1\\ b_2 \end{pmatrix}

那么波函数变换就是:\begin{pmatrix} a_1\\ a_2 \end{pmatrix}=\frac{1}{\sqrt{2}}\begin{pmatrix} 1 &1 \\ 1& -1 \end{pmatrix}\begin{pmatrix} b_1\\ b_2 \end{pmatrix}

那么算符变换就是:S\sigma_xS^{-1}=\sigma_z

习题解答


  • 动量表象中角动量L_x的矩阵元和L_x^2的矩阵元

动量算符的本征函数\psi_p(\vec{r})=\frac{1}{(2\pi \hbar)^{3/2}}e^{\frac{i}{\hbar}\vec{p}\cdot \vec{r}}

\hat{L_x}=\hat{y}\hat{P_z}-\hat{z}\hat{P_y}

(\hat{L}_x)_{x\rightarrow p}=\hat{U}^+\hat{L}_x^x\hat{U}=<\psi_p(x)|\hat{L}_x|\psi_p(x)>


  • 线性谐振子哈密顿量在动量表象中的矩阵元


设已知在\hat{L}^2\hat{L}_z的共同表象中,算符\hat{L}_x\hat{L}_y的矩阵分别为

L_x=\frac{\hbar}{\sqrt{2}}\begin{bmatrix} 0& 1 & 0\\ 1 & 0 & 1\\ 0 & 1 &0 \end{bmatrix}            L_y=\frac{\hbar}{\sqrt{2}}\begin{bmatrix} 0& -i & 0\\ i & 0 & -i\\ 0 & i &0 \end{bmatrix}      

求它的本征值和归一化的本征函数。最后将矩阵对角化


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

River Chandler

谢谢,我会更努力学习工作的!!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值