线性代数|矩阵初等变换与方阵可逆的条件

前置知识:

  • 【定义】逆矩阵
  • 逆矩阵的性质
  • 【定义】行阶梯形矩阵、行最简形矩阵和标准形
  • 矩阵初等变换与矩阵乘法的联系

前置定理 1 初等矩阵都是可逆的,且其逆矩阵是同一类型的初等矩阵。

证明见 “矩阵初等变换与矩阵乘法的联系”。

前置定理 2 有限个可逆矩阵的乘积仍可逆。

证明 不妨设 n n n 阶方阵 A \boldsymbol{A} A B \boldsymbol{B} B 均可逆,则有 ( A B ) ( A B ) − 1 = ( A B ) ( B − 1 A − 1 ) = E (\boldsymbol{A} \boldsymbol{B})(\boldsymbol{A} \boldsymbol{B})^{-1} = (\boldsymbol{A} \boldsymbol{B}) (\boldsymbol{B}^{-1} \boldsymbol{A}^{-1}) = \boldsymbol{E} (AB)(AB)1=(AB)(B1A1)=E,即 A B \boldsymbol{A} \boldsymbol{B} AB 可逆。以此类推,有限个可逆矩阵的乘积仍可逆。得证。

前置性质 3 设 A \boldsymbol{A} A 是一个 m × n m \times n m×n 矩阵,对 A \boldsymbol{A} A 施行一次初等行变换,相当于在 A \boldsymbol{A} A 的左边乘相应的 m m m 阶初等矩阵;对 A \boldsymbol{A} A 施行一次初等列变换,相当于在 A \boldsymbol{A} A 的右边乘相应的 n n n 阶初等矩阵。

证明见 “矩阵初等变换与矩阵乘法的联系”。

前置定理 4 若矩阵 A \boldsymbol{A} A 可逆,则 ∣ A ∣ ≠ 0 |\boldsymbol{A}| \ne 0 A=0

证明见 “逆矩阵的性质”。

前置定义 5(行最简形矩阵) 若行阶梯形矩阵满足:

  1. 非零行的首非零元为 1 1 1
  2. 首非零元所在的列的其他元均为 0 0 0

则称此矩阵为 行最简形矩阵

说明见 “【定义】行阶梯形矩阵、行最简形矩阵和标准形”。

前置定理 6 初等矩阵都是可逆的,且其可逆矩阵是同一类型的初等矩阵。

证明见 “矩阵初等变换与矩阵乘法的联系”。

前置定义 7 对于 n n n 阶矩阵 A \boldsymbol{A} A,如果有一个 n n n 阶矩阵 B \boldsymbol{B} B,使
A B = B A = E \boldsymbol{A} \boldsymbol{B} = \boldsymbol{B} \boldsymbol{A} = \boldsymbol{E} AB=BA=E
则说矩阵 A \boldsymbol{A} A可逆 的,并把矩阵 B \boldsymbol{B} B 称为矩阵 A \boldsymbol{A} A逆矩阵,简称 逆阵

说明见 “【定义】逆矩阵”。

前置定理 8 设 A \boldsymbol{A} A B \boldsymbol{B} B 为 $m \times n $ 矩阵,那么: A ∼ r B \boldsymbol{A} \stackrel{r}{\sim} \boldsymbol{B} ArB 的充分必要条件是存在 m m m 阶可逆矩阵 P \boldsymbol{P} P,使 P A = B \boldsymbol{P} \boldsymbol{A} = \boldsymbol{B} PA=B

证明见 “矩阵初等变换与矩阵乘法的联系”。


首先,为讨论方阵可逆时的非零行数,有引理及证明如下:

引理 1 若 n n n 阶方阵 A \boldsymbol{A} A 可逆,则 A \boldsymbol{A} A 的非零行数为 n n n

证明 设 n n n 阶方阵 A \boldsymbol{A} A 可逆,根据前置定理 4 可知, ∣ A ∣ ≠ 0 |\boldsymbol{A}| \ne 0 A=0

使用反证法,设 A \boldsymbol{A} A 中存在第 i i i 行,该行所有元素均为 0 0 0;将行列式 ∣ A ∣ |\boldsymbol{A}| A 按该行展开,则有行列式 ∣ A ∣ = 0 |\boldsymbol{A}| = 0 A=0,与 ∣ A ∣ ≠ 0 |\boldsymbol{A}| \ne 0 A=0 冲突。因此, A \boldsymbol{A} A 中的非零行数为 n n n

引入矩阵的初等变换,有性质及证明如下:

性质 1 方阵 A \boldsymbol{A} A 可逆的充分必要条件是存在有限个初等矩阵 P 1 , P 2 , ⋯   , P l \boldsymbol{P}_1,\boldsymbol{P}_2,\cdots,\boldsymbol{P}_l P1,P2,,Pl,使得 A = P 1 P 2 ⋯ P l \boldsymbol{A} = \boldsymbol{P}_1 \boldsymbol{P}_2 \cdots \boldsymbol{P}_l A=P1P2Pl

证明 先证充分性。设 A = P 1 P 2 ⋯ P l \boldsymbol{A} = \boldsymbol{P}_1 \boldsymbol{P}_2 \cdots \boldsymbol{P}_l A=P1P2Pl,因为初等矩阵都是可逆的(前置定理 1),又因为有限个可逆矩阵的乘积仍可逆(前置定理 2),所以 A \boldsymbol{A} A 是可逆的。

再证必要性。设 n n n 阶方阵 A \boldsymbol{A} A 可逆,它经过有限次初等行变换成为行最简形矩阵 B \boldsymbol{B} B。由前置性质 3 可知有初等矩阵 Q 1 , Q 2 , ⋯   , Q l \boldsymbol{Q}_1,\boldsymbol{Q}_2,\cdots,\boldsymbol{Q_l} Q1,Q2,,Ql 使
Q 1 Q 2 ⋯ Q l A = B \boldsymbol{Q}_1 \boldsymbol{Q}_2 \cdots \boldsymbol{Q_l} \boldsymbol{A} = \boldsymbol{B} Q1Q2QlA=B
因为初等矩阵都是可逆的(前置定理 1),又因为 A \boldsymbol{A} A 可逆,再因为有限个可逆矩阵的乘积仍可逆(前置定理 2),所以 B \boldsymbol{B} B 是可逆的,从而 B \boldsymbol{B} B 的非零行数为 n n n(引理 1)。因为 B \boldsymbol{B} B 是行最简形矩阵矩阵,所以 B \boldsymbol{B} B n n n 个首非零元 1 1 1,且首非零元所在的列的其他元均为 0 0 0(前置定义 5),但 B \boldsymbol{B} B 只有 n n n 个列,所以 B = E \boldsymbol{B} = \boldsymbol{E} B=E。于是
A = Q 1 − 1 Q 2 − 1 ⋯ Q l − 1 B = Q 1 − 1 Q 2 − 1 ⋯ Q l − 1 E = Q 1 − 1 Q 2 − 1 ⋯ Q l − 1 = P 1 P 2 ⋯ P l \boldsymbol{A} = \boldsymbol{Q}_1^{-1} \boldsymbol{Q}_2^{-1} \cdots \boldsymbol{Q_l}^{-1} \boldsymbol{B} = \boldsymbol{Q}_1^{-1} \boldsymbol{Q}_2^{-1} \cdots \boldsymbol{Q_l}^{-1} \boldsymbol{E} = \boldsymbol{Q}_1^{-1} \boldsymbol{Q}_2^{-1} \cdots \boldsymbol{Q_l}^{-1} = \boldsymbol{P}_1 \boldsymbol{P}_2 \cdots \boldsymbol{P}_l A=Q11Q21Ql1B=Q11Q21Ql1E=Q11Q21Ql1=P1P2Pl
其中 P i = Q i − 1 \boldsymbol{P}_i = \boldsymbol{Q}_i^{-1} Pi=Qi1 为初等矩阵(前置定理 6),即 A \boldsymbol{A} A 是若干个初等矩阵的乘积。

根据性质 1,有推论和证明如下:

推论 1 方阵 A \boldsymbol{A} A 可逆的充分必要条件是 A ∼ r E \boldsymbol{A} \stackrel{r}{\sim} \boldsymbol{E} ArE

证明 方阵 A \boldsymbol{A} A 可逆,等价于:存在可逆矩阵 P \boldsymbol{P} P,使 P A = E \boldsymbol{P} \boldsymbol{A} = \boldsymbol{E} PA=E。(前置定义 7)

存在可逆矩阵 P \boldsymbol{P} P,使 P A = E \boldsymbol{P} \boldsymbol{A} = \boldsymbol{E} PA=E,等价于 A ∼ r E \boldsymbol{A} \stackrel{r}{\sim} \boldsymbol{E} ArE。(前置定理 8)

综上所述,方阵 A \boldsymbol{A} A 可逆的充分必要条件是 A ∼ r E \boldsymbol{A} \stackrel{r}{\sim} \boldsymbol{E} ArE。得证。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

长行

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值