PyTorch如今发布到1.1稳定版本,新增的功能让模型部署变得更为地简单,本文记录如何利用C++来调用PyTorch训练好的模型,其实也是利用官方强大的LibTorch库。
LibTorch的安装
虽然说安装,其实就是下载官方的LibTorch包而已,从官方网站中选择PyTorch(1.1),libtorch,以及cuda的版本,其中会出现下载链接,这里为cuda9.0的链接
https://download.pytorch.org/libtorch/cu90/libtorch-shared-with-deps-latest.zip
下载好找个路径解压。解压完放在那不动!!!
PyTorch模型训练
这里我使用了最为简单ResNet50的预训练模型,其中保存跟踪模型的代码如下:
import torch
import torchvision.models as models
from PIL import
本文介绍了如何利用C++结合LibTorch库调用已训练好的PyTorch模型。首先,详细说明了LibTorch的安装步骤,接着展示了PyTorch模型的训练过程,特别是使用ResNet50预训练模型并保存模型为resnet.pt。最后,提供了CMakeLists配置和C++代码示例,解释了如何读取图像、转换数据格式、加载模型以及执行前向传播获取预测结果。
订阅专栏 解锁全文
2847

被折叠的 条评论
为什么被折叠?



