如何利用C++来调用PyTorch训练好的模型

本文介绍了如何利用C++结合LibTorch库调用已训练好的PyTorch模型。首先,详细说明了LibTorch的安装步骤,接着展示了PyTorch模型的训练过程,特别是使用ResNet50预训练模型并保存模型为resnet.pt。最后,提供了CMakeLists配置和C++代码示例,解释了如何读取图像、转换数据格式、加载模型以及执行前向传播获取预测结果。

PyTorch如今发布到1.1稳定版本,新增的功能让模型部署变得更为地简单,本文记录如何利用C++来调用PyTorch训练好的模型,其实也是利用官方强大的LibTorch库。

LibTorch的安装

虽然说安装,其实就是下载官方的LibTorch包而已,从官方网站中选择PyTorch(1.1),libtorch,以及cuda的版本,其中会出现下载链接,这里为cuda9.0的链接

https://download.pytorch.org/libtorch/cu90/libtorch-shared-with-deps-latest.zip

下载好找个路径解压。解压完放在那不动!!!

PyTorch模型训练

这里我使用了最为简单ResNet50的预训练模型,其中保存跟踪模型的代码如下:

import torch
import torchvision.models as models
from PIL import
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Charmve

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值